【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C.將拋物線沿y軸平移t(t>0)個單位,當平移后的拋物線與線段OB有且只有一個交點時,則t的取值范圍是___.
【答案】或
【解析】
把函數(shù)y=﹣x2+2x+3化為頂點式y=a(x-h)2+k,向下平移使拋物線與線段OB有且只有一個交點,需找到臨界值以及單獨分析頂點落在x軸的情況.
解:分析題意可知,拋物線只能沿y軸向下平移,
∵y=-x2+2x+3=-(x-1)2+4,
∴平移后的拋物線的解析式為y=-(x-1)2+4-t(t>0),
當拋物線過原點時,拋物線與線段OB有兩個交點,
此時,把(0,0)代入得:0=-(0-1)2+4-t,
解得t=3;
當平移后的拋物線的頂點落在x軸上時,x=1,y=0,
代入解析式得:0=-(1-1)2+4-t,
解得t=4,
若使平移后的拋物線與線段OB有且只有一個交點,
則0<t<3或t=4,
故答案為:0<t<3或t=4.
科目:初中數(shù)學 來源: 題型:
【題目】在水果銷售旺季,某水果店購進一優(yōu)質水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關系h=20t﹣5t2.下列敘述正確的是( )
A. 小球的飛行高度不能達到15m
B. 小球的飛行高度可以達到25m
C. 小球從飛出到落地要用時4s
D. 小球飛出1s時的飛行高度為10m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:
我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.
理解:
(1)如圖1,已知Rt△ABC在正方形網格中,請你只用無刻度的直尺在網格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);
(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.
求證:BD是四邊形ABCD的“相似對角線”;
(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若△EFG的面積為2,求FH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里,裝有三個分別寫有數(shù)字1,2,3的小球,它們的形狀、大小、質地等完全相同,先從盒子里隨機取出一個小球,記下數(shù)字后放回盒子,搖勻后再隨機取出一個小球,記下數(shù)字.請你用畫樹形圖或列表的方法,求:
(1)兩次取出小球上的數(shù)字相同的概率;
(2)兩次取出小球上的數(shù)字之和大于3的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一名在校大學生利用“互聯(lián)網+”自主創(chuàng)業(yè),銷售一種產品,這種產品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于16元/件,市場調查發(fā)現(xiàn),該產品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關系如圖所示.
(1)求與之間的函數(shù)關系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2.
(1)求OD的長.
(2)求EC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,F是⊙O上一點,連接FO、FB.C為中點,過點C作CD⊥AB,垂足為D,CD交FB于點E,CG∥FB,交AB的延長線于點G.
(1)求證:CG是⊙O的切線;
(2)若BOF=120°,且CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為1,正方形CEFG的面積為,點E在CD邊上,點G在BC的延長線上,設以線段AD和DE為鄰邊的矩形的面積為,且.
⑴求線段CE的長;
⑵若點H為BC邊的中點,連結HD,求證:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com