【題目】如圖,OA、OB是⊙O的兩條半徑,∠AOB=120°,點C為劣弧AB的中點.
(1)求證:四邊形OACB為菱形;
(2)點D為優(yōu)弧AB上一點,若∠BCD=∠OBD,BD=2,求OB的長.
【答案】(1)證明見解析;(2)OB=.
【解析】
(1)連接OC,利用圓心角定理證△AOC、△BOC是等邊三角形,得出OA=AC=OB=BC即可得;
(2)延長BO交⊙O于點E,連接DE,知∠BDE=90°,∠BCD=∠BED,結合∠BCD=∠OBD得∠BED=∠OBD=45°,根據BD=2求得BE=2,從而得出答案.
解:(1)如圖,連接OC,
∵∠AOB=120°,點C為劣弧AB的中點,
∴∠AOC=∠BOC=60°,AC=BC,
∵OA=OB=OC,
∴△AOC、△BOC是等邊三角形,
∴OA=AC=OB=BC,
∴四邊形AOBC是菱形;
(2)延長BO交⊙O于點E,連接DE,
則BE是⊙O的直徑,
∴∠BDE=90°,∠BCD=∠BED,
∵∠BCD=∠OBD,
∴∠BED=∠OBD=45°,
∵BD=2,
∴BE=2,
則OB=.
科目:初中數學 來源: 題型:
【題目】一個不透明的袋子中裝有2個紅球和2個白球,這些球除顏色外其余都相同,先從袋中摸出1個球后不放回,再摸出一個球.
(1)請用樹狀圖或列表法列舉出兩次摸球可能出現的各種結果.
(2)求兩次摸到不同顏色的球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在面積都相等的所有矩形中,當其中一個矩形的一邊長為1時,它的另一邊長為3.
(1)設矩形的相鄰兩邊長分別為x,y.
①求y關于x的函數表達式;
②當y≥3時,求x的取值范圍;
(2)圓圓說其中有一個矩形的周長為6,方方說有一個矩形的周長為10,你認為圓圓和方方的說法對嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某玩具公司生產一種電子玩具,每只玩具的生產成本為18元,試銷過程中發(fā)現,每月銷售量y(萬只)與銷售單價x(元)之間的關系可以近似的看作一次函數y=2x+100,設每月銷售這種玩具的利潤為w(萬元).
(1)寫出w與x之間的函數表達式;
(2)當銷售單價為多少元時,公司每月獲得的利潤為440萬元?
(3)如果公司每月的生產成本不超過540萬元,那么當銷售單價為多少元時,公司每月獲得的利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形ABCD中,E為對角線BD邊上一點.
當時,把線段CE繞C點順時針旋轉得CF,連接DF.
求證:;
連FE成直線交CD于點M,交AB于點N,求證:;
當,E為BD中點時,如圖2,P為BC下方一點,,,,求PC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】九(1)班數學興趣小組經過市場調查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進價為每件30元,設銷售該商品的每天利潤為y元[
(1)求出y與x的函數關系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長都是1的小正方形組成的網格中,P,Q,B,C均為格點,線段PQ、BC相交于點A.
(Ⅰ)PA:AQ= ;
(Ⅱ)尺規(guī)作圖:設∠QAB=α,將線段AB繞點A逆時針旋轉α+90°的角,點B的對應點為B′,請你畫出點B′.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.
(1)求此拋物線的解析式;
(2)當PA+PB的值最小時,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com