【題目】我們知道,任意一個正整數(shù)都可以進行這樣的分解:是正整數(shù),且),在的所有這種分解中,如果兩因數(shù)之差的絕對值最小,我們就稱的最佳分解,并規(guī)定

例如:18可以分解成,因為,所以18的最佳分解,所以

1)如果一個正整數(shù)是另外一個正整數(shù)的平方,我們稱正整數(shù)是完全平方數(shù).

求證:對任意一個完全平方數(shù),總有;

2)如果一個兩位正整數(shù),為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù),得到的新數(shù)減去原來的兩位正整數(shù)所得的差為9,那么我們稱這個求真抱樸數(shù),求所有的求真抱樸數(shù)

3)在(2)所得的求真抱樸數(shù)中,求的最大值.

【答案】1)見解析;(2)所有的求真抱樸數(shù)為:12,2334,455667,78,89;(3

【解析】

1)求出m的最佳分解,即可證明結論;

2)求出,可得,根據(jù)x的取值范圍寫出所有的求真抱樸數(shù)即可;

3)求出所有的的值,即可得出答案.

解:(1)∵,

m的最佳分解,

;

2)設交換后的新數(shù)為,則

,

,

,,為自然數(shù),

∴所有的求真抱樸數(shù)為:1223,3445,56,6778,89;

3)∵,,,,,,,其中最大,

∴所得的求真抱樸數(shù)中,的最大值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,拋物線x軸于A、B兩點,交y軸于點C,且對稱軸為x=2,點P0t)是y軸上的一個動點.

1)求拋物線的解析式及頂點D的坐標.

2)如圖1,當0≤t≤4時,設PAD的面積為S,求出St之間的函數(shù)關系式;S是否有最小值?如果有,求出S的最小值和此時t的值.

3)如圖2,當點P運動到使PDA=90°時,RtADPRtAOC是否相似?若相似,求出點P的坐標;若不相似,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點G是正方形ABCD對角線CA的延長線上任意一點,以線段AG為邊作一個正方形AEFG,線段EBGD相交于點H


1)求證:EB=GDEBGD;
2)若AB=2,AG=,求的長;

3)如圖2,正方形AEFG繞點A逆時針旋轉連結DEBG,的面積之差是否會發(fā)生變化?若不變,請求出的面積之差;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于xy的二元一次方程組x-y=3a①和x+3y=4-a.

1)如果是方程①的解,求a的值;

2)當a=1時,求兩個方程的公共解;

3)若方程組的解滿足x≤0,y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】霧霾天氣持續(xù)籠罩我國大部分地區(qū),困擾著廣大市民的生活,口罩市場出現(xiàn)熱銷,小明的爸爸用12000元購進甲、乙兩種型號的口罩在自家商店銷售,銷售完后共獲利2700元,進價和售價如表:

1)小明爸爸的商店購進甲、乙兩種型號口罩各多少袋?

2)該商店第二次以原價購進甲、乙兩種型號口罩,購進甲種型號口罩袋數(shù)不變,而購進乙種型號口罩袋數(shù)是第一次的2倍,甲種口罩按原售價出售,而效果更好的乙種口罩打折讓利銷售,若兩種型號的口罩全部售完,要使第二次銷售活動獲利不少于2460元,每袋乙種型號的口罩最多打幾折?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,2×2網(wǎng)格(每個小正方形的邊長為1)中A,O,B,CD,EF,H,G九個格點.拋物線l的解析式為y=x2+bx+c

1)若l經過點O00)和B1,0),b= ,c= 它還經過的另一格點的坐標為

2)若l經過點H﹣1,1)和G0,1),求它的解析式及頂點坐標通過計算說明點D1,2)是否在l

3)若l經過這九個格點中的三個直接寫出所有滿足這樣的拋物線的條數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標中,四邊形為矩形,如圖1,點坐標為,點坐標為,已知滿足

1)求的值;

2)①如圖1,分別為上一點,若,求證:;

②如圖2,分別為上一點,交于點 ,,則___________

3)如圖3,在矩形中,,點在邊上且,連接,動點在線段是(動點不重合),動點在線段的延長線上,且,連接于點,作 試問:當在移動過程中,線段的長度是否發(fā)生變化?若不變求出線段的長度;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,四邊形ABCD是正方形,點P在直線BC上,點G在直線AD上(P、G不與正方形頂點重合,且在CD的同側),PD=PG,DFPG于點H,交直線AB于點F,將線段PG繞點P逆時針旋轉90°得到線段PE,連結EF

1)如圖1,當點P與點G分別在線段BC與線段AD上時.

①求證:DG=2PC;

②求證:四邊形PEFD是菱形;

2)如圖2,當點P與點G分別在線段BC與線段AD的延長線上時,請猜想四邊形PEFD是怎樣的特殊四邊形,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為紀念建國70周年,我市某中學團委擬組織學生開展唱紅歌比賽活動,為此,該校隨機抽取部分學生就“你是否喜歡紅歌”進行問卷調查,并將調查結果統(tǒng)計后繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.

態(tài)度

非常喜歡

喜歡

一般

不知道

頻數(shù)

90

b

30

10

頻率

a

請你根據(jù)統(tǒng)計圖、表提供的信息解答下列問題:

該校這次隨機抽取了______名學生參加問卷調查;

確定統(tǒng)計表中的值:______,______;

在統(tǒng)計圖中“喜歡”部分扇形所對應的圓心角是______度;

若該校共有2000名學生,估計全校態(tài)度為“非常喜歡”的學生有______

查看答案和解析>>

同步練習冊答案