【題目】如圖所示,ABC≌△ADE,BC的延長(zhǎng)線交AD于點(diǎn)F,DE于點(diǎn)G,若∠CAD=20°,B=D=35°,EAB=120°,求∠AED,BFD以及∠DGB的度數(shù).

【答案】AED=95°,BFD=105°,DGB=70°.

【解析】

根據(jù)“全等三角形的性質(zhì)”和“三角形內(nèi)角和定理及三角形外角的性質(zhì)”結(jié)合已知條件進(jìn)行分析解答即可.

∵△ABC≌△ADE,

∴∠EAD=CAB.

∵∠CAD=20°,EAB=120°,

∴∠EAD=CAB=(EAB-CAD)=50°.

∵∠D+EAD+AED=180°,

∴∠AED=180°-35°-50°=95°.

∴∠FAB=CAD+CAB=20°+50°=70°.

∴∠BFD=B+FAB=35°+70°=105°.

∵∠BFD=D+DGB,

∴∠DGB=BFD-D=105°-35°=70°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=8 ,AD=10,點(diǎn)E是CD中點(diǎn),將這張紙片依次折疊兩次;第一次折疊紙片使點(diǎn)A與點(diǎn)E重合,如圖2,折痕為MN,連接ME、NE;第二次折疊紙片使點(diǎn)N與點(diǎn)E重合,如圖3,點(diǎn)B落到B′處,折痕為HG,連接HE,則tan∠EHG=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)市委和市政府綠色環(huán)保,節(jié)能減排的號(hào)召,幸福商場(chǎng)用3300元購(gòu)進(jìn)甲、乙兩種節(jié)能燈共計(jì)100只,很快售完.這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

進(jìn)價(jià)(元/只)

售價(jià)(元/只)

甲種節(jié)能燈

30

40

甲種節(jié)能燈

35

50

(1)求幸福商場(chǎng)甲、乙兩種節(jié)能燈各購(gòu)進(jìn)了多少只?

(2)全部售完100只節(jié)能燈后,商場(chǎng)共計(jì)獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某市初中學(xué)生上學(xué)的交通方式,從中隨機(jī)調(diào)查了a名學(xué)生的上學(xué)交通方式,統(tǒng)計(jì)結(jié)果如圖.
(1)求a的值;
(2)補(bǔ)全條形統(tǒng)計(jì)圖并求出乘坐公共汽車上學(xué)占上學(xué)交通方式百分比的扇形圓心角的度數(shù);
(3)該市共有初中學(xué)生15000名,請(qǐng)估計(jì)其中坐校車上學(xué)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線l1:y=x2﹣4的圖象與x軸交于A,C兩點(diǎn),拋物線l2與l1關(guān)于x軸對(duì)稱.

(1)直接寫(xiě)出l2所對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)若點(diǎn)B是拋物線l2上的動(dòng)點(diǎn)(B與A,C不重合),以AC為對(duì)角線,A,B,C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)為D,求證:D點(diǎn)在l2上.
(3)當(dāng)點(diǎn)B位于l1在x軸下方的圖象上,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它面積的最值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 已知點(diǎn)A、點(diǎn)B是直線上的兩點(diǎn),AB =12厘米,點(diǎn)C在線段AB上,且AC=8厘米點(diǎn)P、點(diǎn)Q是直線上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P的速度為1厘米秒,點(diǎn)Q的速度為2厘米/秒點(diǎn)P、Q分別從點(diǎn)C、點(diǎn)B同時(shí)出發(fā),在直線上運(yùn)動(dòng),則經(jīng)過(guò) 秒時(shí)線段PQ的長(zhǎng)為5厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ΔABC中,CD是AB邊上的高,AC=8,∠ACD=30°,tan∠ACB= ,點(diǎn)P為CD上一動(dòng)點(diǎn),當(dāng)BP+CP最小時(shí),DP=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B兩地相距450千米,兩地之間有一個(gè)加油站O,且AO=270千米,一輛轎車從A地出發(fā),以每小時(shí)90千米的速度開(kāi)往B地,一輛客車從B地出發(fā),以每小時(shí)60千米的速度開(kāi)往A地,兩車同時(shí)出發(fā),設(shè)出發(fā)時(shí)間為t小時(shí).

(1)經(jīng)過(guò)幾小時(shí)兩車相遇?

(2)當(dāng)出發(fā)2小時(shí)時(shí),轎車和客車分別距離加油站O多遠(yuǎn)?

(3)經(jīng)過(guò)幾小時(shí),兩車相距50千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AD=5,AB=6,點(diǎn)E為DC上一個(gè)動(dòng)點(diǎn),把△ADE沿AE折疊,點(diǎn)F為CD上一個(gè)動(dòng)點(diǎn),把△BCF沿BF折疊,當(dāng)點(diǎn)D的對(duì)應(yīng)點(diǎn)和點(diǎn)C的對(duì)應(yīng)點(diǎn)都落在點(diǎn)D′處時(shí),EF的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案