如圖.在△ABC的外接圓上,弧AB、弧BC、弧CA的度數(shù)比為12:13:11.在BC上取一點(diǎn)D.過點(diǎn)D分別作AC、AB的平行線,交BC于E、F兩點(diǎn),則∠EDF的度數(shù)為   
【答案】分析:首先設(shè)△ABC的外接圓的圓心為O,連接OA,OB,OC,由弧AB、弧BC、弧CA的度數(shù)比為12:13:11,即可求得圓心角∠AOB與∠AOC的度數(shù),又由圓周角定理,求得∠ABC與∠ACB的度數(shù),DE∥AC,DF∥AB與三角形的內(nèi)角和定理,即可求得∠EDF的度數(shù).
解答:解:設(shè)△ABC的外接圓的圓心為O,連接OA,OB,OC,
∵弧AB、弧BC、弧CA的度數(shù)比為12:13:11,
∴∠AOB=×360°=120°,∠AOC==110°,
∴∠ACB=∠AOB=60°,∠ABC=∠AOC=55°,
∵DE∥AC,DF∥AB,
∴∠FED=∠ACB=60°,∠DFE=∠ABC=55°,
∴∠EDF=180°-∠DEF-∠DFE=180°-60°-55°=65°.
故答案為:65°.
點(diǎn)評:此題考查了圓周角定理、平行線的性質(zhì)以及三角形內(nèi)角和定理.此題難度適中,解題的關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.注意輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點(diǎn)D在AB上運(yùn)動,但與A、B不重合,過B、C、D三點(diǎn)的圓交AC于E,連接DE.
(1)設(shè)AD=x,CE=y,求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當(dāng)AD長為關(guān)于x的方程2x2+(4m+1)x+2m=0的一個整數(shù)根時,求m的值.

(II)如圖,在直角坐標(biāo)系xOy中,以點(diǎn)A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點(diǎn)P,B點(diǎn)在x軸正半軸精英家教網(wǎng)上,過P點(diǎn)作兩圓的公切線DP交y軸于D,交x軸于C,
(1)設(shè)⊙A的半徑為r1,⊙B的半徑為r2,且r2=
23
r1,求公切線DP的長及直線DP的函數(shù)解析式,
(2)若⊙A的位置、大小不變,點(diǎn)B在X軸正半軸上移動,⊙B與⊙A始終外切.過D作⊙B的切線DE,E為切點(diǎn).當(dāng)DE=4時,B點(diǎn)在什么位置?從解答中能發(fā)現(xiàn)什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D.下列四個結(jié)論:①∠BOC=90°+
1
2
∠A;②EF不可能是△ABC的中位線;③設(shè)OD=m,AE+AF=n,則S△AEF=mn;④以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切.其中正確結(jié)論的個數(shù)是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,BC=12,AB=10,sinB=
3
5
,動點(diǎn)D從點(diǎn)A出發(fā),以每秒1個單位的速度沿線段AB向點(diǎn)B 運(yùn)動,DE∥BC,交AC于點(diǎn)E,以DE為邊,在點(diǎn)A的異側(cè)作正方形DEFG.設(shè)運(yùn)動時間為t,
(1)t為何值時,正方形DEFG的邊GF在BC上;
(2)當(dāng)GF運(yùn)動到△ABC外時,EF、DG分別與BC交于點(diǎn)P、Q,是否存在時刻t,使得△CEP與△BDQ的面積之和等于△ABC面積的
1
4

(3)設(shè)△ABC與正方形DEFG重疊部分的面積為S,試求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,∠BAC=30°,分別以AB、AC為邊向形外作兩個等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.
(1)求∠DBC的度數(shù);
(2)求證:BD=CE;
(3)若連接BE、CD,試判斷BE、CD是否相等,并對結(jié)論給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,自△ABC的外接圓弧BC上的任一點(diǎn)M,作MD⊥BC于D,P是AM上一點(diǎn),作PE⊥AC,PF⊥AB,PG⊥BC,E,F(xiàn),G分別在AC,AB,AD上.證明:E,F(xiàn),G三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊答案