【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點(diǎn)F,點(diǎn)E在AB的延長(zhǎng)線上,射線EM經(jīng)過點(diǎn)C,且∠ACE+∠AFO=180°.
(1)求證:EM是⊙O的切線;
(2)若∠A=∠E,⊙O的半徑為1,求陰影部分的面積.
【答案】(1)見解析;(2)
【解析】
(1)如下圖,根據(jù)垂徑定理得∠AOF=90°,根據(jù)三角形內(nèi)角和得到∠A+∠AFO=90°,根據(jù)等腰三角形的性質(zhì)得到∠OCE=90°,從而證切線;
(2)根據(jù)圓周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等邊三角形,根據(jù)扇形和等邊三角形的面積公式即可得到結(jié)論.
解:(1)連接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO=90°,
∵∠ACE+∠AFO=180°,∠ACE+∠ACM=180°
∴.∠AFO=∠ACM
∵OA=OC,
∴∠A=∠ACO,
∴∠ACO+∠ACM.=90°,
∴∠OCM=90°
∴OC⊥ME,
∴EM是⊙O的切線;
(2)∵∠EOC=2∠A=2∠E
又∵∠EOC+∠E=∠COM=90°,
∴∠E+2∠E=90°,
∴∠E=30°,
∴∠EOC=60°,
∴CE=OCtan60°=,△OCB是等邊三角形
∴陰影部分的面積=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示.下列結(jié)論:
①abc<0;②3a+c=0;
③當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3;
④方程ax2+bx+c﹣3=0有兩個(gè)不相等的實(shí)數(shù)根;
⑤點(diǎn)(﹣2,y1),(2,y2)都在拋物線上,則有y1<0<y2.
其中結(jié)論正確的個(gè)數(shù)是( ).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是二次函數(shù)圖象的一部分,在下列結(jié)論中:①;②;③有兩個(gè)相等的實(shí)數(shù)根;④;其中正確的結(jié)論有( 。
A.1個(gè)B.2 個(gè)C.3 個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)圖象上的兩點(diǎn)(x1,y1)和(3,y2),若y1>y2,則x1的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為4,P 為BC上的動(dòng)點(diǎn),連接PA,作PQ⊥PA,PQ交CD于Q,連接AQ ,則AQ的最小值是( )
A.5B.C.D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為4,P 為BC上的動(dòng)點(diǎn),連接PA,作PQ⊥PA,PQ交CD于Q,連接AQ ,則AQ的最小值是( )
A.5B.C.D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)精準(zhǔn)扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場(chǎng)銷售,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),草莓銷售不會(huì)虧本,且每天的銷售量y(千克)與銷售單價(jià)x(元/千克)之間函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當(dāng)該品種草莓的定價(jià)為多少時(shí),每天銷售獲得利潤(rùn)最大?最大利潤(rùn)是多少?
(3)某村今年草莓采摘期限30天,預(yù)計(jì)產(chǎn)量6000千克,則按照(2)中的方式進(jìn)行銷售,能否銷售完這批草莓?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩地相距2.4km,甲騎車勻速?gòu)?/span>A地前往B地,如圖表示甲騎車過程中離A地的路程y(km)與他行駛所用的時(shí)間x(min)之間的關(guān)系.根據(jù)圖像解答下列問題:
(1)甲騎車的速度是 km/min;
(2)若在甲出發(fā)時(shí),乙在甲前方0.6km處,兩人均沿同一路線同時(shí)出發(fā)勻速前往B地,在第3分鐘甲追上了乙,兩人到達(dá)B地后停止.請(qǐng)?jiān)谙旅嫱黄矫嬷苯亲鴺?biāo)系中畫出乙離A地的距離y乙(km)與所用時(shí)間x(min)的關(guān)系的大致圖像;
(3)乙在第幾分鐘到達(dá)B地?
(4)兩人在整個(gè)行駛過程中,何時(shí)相距0.2km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=﹣+bx+c(其中b、c是常數(shù))經(jīng)過點(diǎn)A(﹣2,﹣2)與點(diǎn)B(0,4),頂點(diǎn)為M.
(1)求該拋物線的表達(dá)式與點(diǎn)M的坐標(biāo);
(2)平移這條拋物線,得到的新拋物線與y軸交于點(diǎn)C(點(diǎn)C在點(diǎn)B的下方),且△BCM的面積為3.新拋物線的對(duì)稱軸l經(jīng)過點(diǎn)A,直線l與x軸交于點(diǎn)D.
①求點(diǎn)A隨拋物線平移后的對(duì)應(yīng)點(diǎn)坐標(biāo);
②點(diǎn)E、G在新拋物線上,且關(guān)于直線l對(duì)稱,如果正方形DEFG的頂點(diǎn)F在第二象限內(nèi),求點(diǎn)F的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com