【題目】如圖,四邊形ABCD是正方形,E,F分別在線段BCCD上,.連接EF。將△ADF繞著點順時針旋轉(zhuǎn)90°,得到

1)證明:

2)證明:EF=BE+DF.

3)已知正方形ABCD邊長是6,EF=5,求線段BE的長.

【答案】1)見解析;(2)見解析(323

【解析】

1)由旋轉(zhuǎn)的性質(zhì)得到,,,然后得到,利用SAS證明三角形全等即可;

2)由(1)知DF=BF’,即可得到EF=BE+DF;

3)設BE=x,則DF=5x,得到CF=x+1,利用勾股定理得,即可求出BE的長度.

解:(1)由旋轉(zhuǎn)的性質(zhì)可得,,

,

,

2)∵,

,

又∵,

EF=BE+DF;

3∵BE=x,EF=BE+DF EF=5,

∴DF=5x,

正方形ABCD邊長是6,即BC=CD=6,

∴CE=BCBE=6xCF=CDDF=6(5x)=x+1,

Rt△CEF中,有,

解得:;

線段BE的長為23.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C、D

1)求證ACBD;

2)若AC3,大圓和小圓的半徑分別為64,則CD的長度是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴大銷售、增加盈利盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應降價多少元?請完成下列問題:

(1)未降價之前,某商場襯衫的總盈利為    元.

(2)降價后,設某商場每件襯衫應降價x元,則每件襯衫盈利   元,平均每天可售出   件(用含x的代數(shù)式進行表示)

(3)請列出方程,求出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的部分對應值如表:

0

2

3

4

5

0

0

下列結論:①拋物線的開口向上;②拋物線的對稱軸為直線;③當時,;④3是方程的一個根;⑤若,是拋物線上兩點,則,其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù),它與軸交于、,且位于原點兩側,與的正半軸交于,頂點軸右側的直線上,則下列說法:① 其中正確的結論有(

A.①②B.②③C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于點C(O,4),與軸交于點A和點B,其中點A的坐標為(-2,0),拋物線的對稱軸與拋物線交于點D,與直線BC交于點E.

(1)求拋物線的解析式;

(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標;若不存在,請說明理由;

(3)平行于DE的一條動直線Z與直線BC相交于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,弦EFAB于點C,過點FO的切線交AB的延長線于點D

1)已知∠Aα,求∠D的大。ㄓ煤α的式子表示);

2)取BE的中點M,連接MF,請補全圖形;若∠A30°,MF,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將正面分別寫著數(shù)字1,2,3的三張卡片(注:這三張卡片的形狀、大小、質(zhì)地,顏色等其他方面完全相同,若背面上放在桌面上,這三張卡片看上去無任何差別)洗勻后,背面向上放在桌面上,從中先隨機抽取一張卡片,記該卡片上的數(shù)字為x,再把剩下的兩張卡片洗勻后,背面向上放在桌面上,再從這兩張卡片中隨機抽取一張卡片,記該卡片上的數(shù)字為y.

(1)用列表法或樹狀圖法(樹狀圖也稱樹形圖)中的一種方法,寫出(x,y)所有可能出現(xiàn)的結果.

(2)求取出的兩張卡片上的數(shù)字之和為偶數(shù)的概率P.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片的中點,上一動點,沿折疊,點落在點處;延長點,連接.

1)求證:;

2)當時,將沿折疊,點落在線段上點.

①求證:

②如果,,求的長.

查看答案和解析>>

同步練習冊答案