【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)F.
求證:BF=AC.

【答案】證明:∵CD⊥AB,
∴∠BDC=∠CDA=90°;
∵∠ABC=45°,
∴∠DCB=∠ABC=45°(三角形的內(nèi)角和定理),
∴DB=DC(等角對(duì)等邊);
∵BE⊥AC,
∴∠AEB=90°,
∴∠A+∠ABE=90°(直角三角形的兩個(gè)銳角互為余角);
∵∠CDA=90°,
∴∠A+∠ACD=90°,
∴∠ABE=∠ACD(同角的余角相等);
在△BDF和△CDA中,
,
∴△BDF≌△CDA(ASA),
∴BF=AC(全等三角形的對(duì)應(yīng)邊相等)
【解析】由已知條件“∠ABC=45°,CD⊥AB”可推知△BCD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)知:∠DCB=∠ABC
=45°、DB=DC;然后由已知條件“BE⊥AC”求證∠ABE=∠ACD;再利用AAS判定Rt△DFB≌Rt△DAC,從而得出BF=AC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC.

(1)當(dāng)∠B=40°時(shí),求∠ADC的度數(shù);
(2)若AB=10cm,CD=4cm,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點(diǎn)E,AD⊥CE于點(diǎn)D.求證:

(1)△BEC≌△CDA;
(2)DE=AD﹣BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,點(diǎn)E在BC上,∠A+∠ADE=180°,∠B=78°,∠C=60°,求∠EDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校開展“經(jīng)典誦讀”比賽活動(dòng),誦讀材料有《論語》,《三字經(jīng)》,《弟子規(guī)》(分別用字母A,B,C依次表示這三個(gè)誦讀材料),將AB,C這三個(gè)字母分別寫在3張完全相同的不透明卡片的正面上,把這3張卡片背面朝上洗勻后放在桌面上.小明和小亮參加誦讀比賽,比賽時(shí)小明先從中隨機(jī)抽取一張卡片,記錄下卡片上的內(nèi)容,放回后洗勻,再由小亮從中隨機(jī)抽取一張卡片,選手按各自抽取的卡片上的內(nèi)容進(jìn)行誦讀比賽.

(1)小明誦讀《論語》的概率是   .

(2)請(qǐng)用列表法或畫樹狀圖法求小明和小亮誦讀兩個(gè)不同材料的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝, △DEB的周長為( )21co

A.4cm
B.6cm
C.10cm
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,4),B(2,4),C(3,﹣1).
(1)試在平面直角坐標(biāo)系中,標(biāo)出A,B,C三點(diǎn);

(2)求△ABC的面積.
(3)若△A1B1C1與△ABC關(guān)于x軸對(duì)稱,寫出A1、B1、C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年6月18日為父親節(jié),某校準(zhǔn)備開展形式多樣的感恩教育活動(dòng).下面圖①、圖②分別是該校調(diào)查部分學(xué)生是否知道父親生日情況的扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖.

根據(jù)上圖信息,解答下列問題:

(1)本次被調(diào)查的學(xué)生總數(shù)有 人,并補(bǔ)全頻數(shù)分布直方圖②;

(2)在扇形統(tǒng)計(jì)圖中,學(xué)生知道父親生日的區(qū)域圓心角為 o;

(3)若這所學(xué)校共有學(xué)生1500人,請(qǐng)你估計(jì)該校知道父親生日的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算: 3a(-2b)2÷6ab

查看答案和解析>>

同步練習(xí)冊(cè)答案