【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.

1)如圖1,若ABCD,點(diǎn)PABCD內(nèi)部,B=50°D=30°,求BPD

2)如圖2,將點(diǎn)P移到AB、CD外部,則BPD、B、D之間有何數(shù)量關(guān)系?(不需證明)

3)如圖3,寫出BPDBDBQD之間的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.

4)如圖4,求出A+B+C+D+E+F的度數(shù).

【答案】(1)80°;(2)∠B=BPD+D,證明見(jiàn)解析;(3)∠BPD=BQD+B+D;(4)360°

【解答】

【解析】試題(1)過(guò)點(diǎn)P作PE∥AB,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠B=∠1,∠D=∠2,再根據(jù)∠BPD=∠1+∠2代入數(shù)據(jù)計(jì)算即可得解;(2)根據(jù)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BOD=∠B,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式整理即可得解;(3)連接QP并延長(zhǎng),再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和解答;(4)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠A+∠E=∠1,∠B+∠F=∠2,再根據(jù)四邊形的內(nèi)角和定理列式計(jì)算即可得解.

試題解析:

解:(1)過(guò)點(diǎn)PPEAB

ABCD

ABEPCD,

∴∠B=1=50°D=2=30°,

∴∠BPD=80°;

2B=BPD+D

3)如圖,連接QP并延長(zhǎng),

結(jié)論:BPD=BQD+B+D

理由:略

4)如圖,由三角形的外角性質(zhì),A+E=1,B+F=2,

∵∠1+2+C+D=360°,

∴∠A+B+C+D+E+F=360°

點(diǎn)晴:本題考查了平行線的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并作出輔助線是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABCRtADEABCADE=90°,BCDE相交于點(diǎn)F,連接CDEB.

(1)圖中還有幾對(duì)全等三角形,請(qǐng)你一一列舉;

(2)求證:CFEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一臺(tái)放置在水平桌面上的筆記本電腦,將其側(cè)面抽象成如圖2所示的幾何圖形,若顯示屏所在面的側(cè)邊AO與鍵盤所在面的側(cè)邊BO長(zhǎng)均為24cm,點(diǎn)P為眼睛所在位置,D為AO的中點(diǎn),連接PD,當(dāng)PD⊥AO時(shí),稱點(diǎn)P為“最佳視角點(diǎn)”,作PC⊥BC,垂足C在OB的延長(zhǎng)線上,且BC=12cm.
(1)當(dāng)PA=45cm時(shí),求PC的長(zhǎng);
(2)若∠AOC=120°時(shí),“最佳視角點(diǎn)”P在直線PC上的位置會(huì)發(fā)生什么變化?此時(shí)PC的長(zhǎng)是多少?請(qǐng)通過(guò)計(jì)算說(shuō)明.(結(jié)果精確到0.1cm,可用科學(xué)計(jì)算器,參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】宿州市高新區(qū)某電子電路板廠到安徽大學(xué)從2018年應(yīng)屆畢業(yè)生中招聘公司職員,對(duì)應(yīng)聘者的專業(yè)知識(shí)、英語(yǔ)水平、參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等三項(xiàng)進(jìn)行測(cè)試或成果認(rèn)定,三項(xiàng)的得分滿分都為100分,三項(xiàng)的分?jǐn)?shù)分別按532的比例記入每人的最后總分,有4位應(yīng)聘者的得分如下表所示.

項(xiàng)目

專業(yè)知識(shí)

英語(yǔ)水平

參加社會(huì)實(shí)踐與

社團(tuán)活動(dòng)等

85

85

90

85

85

70

80

90

70

90

90

50

(1)分別算出4位應(yīng)聘者的總分;

(2)表中四人專業(yè)知識(shí)的平均分為85分,方差為12.5,四人英語(yǔ)水平的平均分為87.5分,方差為6.25,請(qǐng)你求出四人參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等的平均分及方差;

(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對(duì)大學(xué)生應(yīng)聘者有何建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】體育中考前,抽樣調(diào)查了九年級(jí)學(xué)生的“1分鐘跳繩”成績(jī),并繪制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.
(1)補(bǔ)全頻數(shù)分布直方圖;
(2)扇形圖中m=
(3)若“1分鐘跳繩”成績(jī)大于或等于140次為優(yōu)秀,則估計(jì)全市九年級(jí)5900名學(xué)生中“1分鐘跳繩”成績(jī)?yōu)閮?yōu)秀的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】放風(fēng)箏是大家喜愛(ài)的一種運(yùn)動(dòng),星期天的上午小明在市政府廣場(chǎng)上放風(fēng)箏.如圖,他在A處不小心讓風(fēng)箏掛在了一棵樹梢上,風(fēng)箏固定在了D處,此時(shí)風(fēng)箏AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動(dòng),收線到達(dá)了離A處10米的B處,此時(shí)風(fēng)箏線BD與水平線的夾角為45°.已知點(diǎn)A,B,C在同一條水平直線上,請(qǐng)你求出小明此時(shí)所收回的風(fēng)箏線的長(zhǎng)度是多少米?(風(fēng)箏線AD,BD均為線段, ≈1.414, ≈1.732,最后結(jié)果精確到1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,OEAB于O,若BOD=40°,則不正確的結(jié)論是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中有三個(gè)點(diǎn)A(1,﹣1)、B(﹣1,﹣1)、C(0,1),點(diǎn)P(0,2)關(guān)于A的對(duì)稱點(diǎn)為P1,P1關(guān)于B的對(duì)稱點(diǎn)為P2,P2關(guān)于C的對(duì)稱點(diǎn)為P3,按此規(guī)律繼續(xù)以A、B、C為對(duì)稱中心重復(fù)前面的操作,依次得到P4、P5、P6,…,則點(diǎn)P2018的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平行四邊形ABCD中,點(diǎn)O是邊AD的中點(diǎn),連接CO并延長(zhǎng)交BA延長(zhǎng)線于點(diǎn)E,連接ED、AC.

(1)如圖1,求證:四邊形AEDC是平行四邊形;

(2)如圖2,若四邊形AEDC是矩形,請(qǐng)?zhí)骄俊?/span>COD與∠B的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案