【題目】根據(jù)下列條件不能判斷△ABC是直角三角形的是( )
A.∠B=50° ,∠C=40°
B.∠B=∠C=45°
C.∠A,∠B,∠C的度數(shù)比為5:3:2
D.∠A-∠B=90°

【答案】D
【解析】A.∵∠B=50° ,∠C=40° ,
∴∠B=180°-50°-40°=90°,
∴△ABC是直角三角形.A符合題意;
B.∵∠B=∠C=45° ,
∴∠A=180°-45°-45°=90°,
∴△ABC是直角三角形.B符合題意;
C.∵∠A,∠B,∠C的度數(shù)比為5:3:2 ,
設(shè)∠A=5x,∠B=3x,∠C=2x,
∴∠A+∠B+∠C=5x+3x+2x=180°,
∴x=18°,
∴∠A=90°,
∴△ABC是直角三角形.C符合題意;
D.∵∠A-∠B=90°,
∴∠A=90°+∠B90°,
∴△ABC是鈍角三角形.D不符合題意;
所以答案是:D.
【考點(diǎn)精析】掌握三角形的內(nèi)角和外角是解答本題的根本,需要知道三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①,已知:RtABC中,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BDmD,CEmE,求證:DE=BD+CE;

(2)如圖②,將(1)中的條件改為:△ABC中,AB=AC,并且∠BDA=AEC=BAC=α,α為任意銳角或鈍角,請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;

(3)應(yīng)用:如圖③,在△ABC中,∠BAC是鈍角,AB=AC,∠BAD>∠CAE,∠BDA=AEC=BAC,直線mBC的延長(zhǎng)線交于點(diǎn)F,若BC=2CF,△ABC的面積是12,求△ABD與△CEF的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(-5,0),B(-3,0),點(diǎn)C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點(diǎn)P從點(diǎn)Q(4,0)出發(fā),沿x軸向左以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)時(shí)間t秒.

(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)∠BCP=15°時(shí),求t的值;
(3)以點(diǎn)P為圓心,PC為半徑的⊙P隨點(diǎn)P的運(yùn)動(dòng)而變化,當(dāng)⊙P與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)圖象經(jīng)過(guò)點(diǎn)A0,2),且與正比例函數(shù)y=﹣x的圖象交于點(diǎn)B,B點(diǎn)的橫坐標(biāo)是﹣1

1)求該一次函數(shù)的解析式:

2)求一次函數(shù)圖象、正比例函數(shù)圖象與x軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校運(yùn)動(dòng)會(huì)需購(gòu)買(mǎi)A,B兩種獎(jiǎng)品,若購(gòu)買(mǎi)A種獎(jiǎng)品3件和B種獎(jiǎng)品2件,共需60元;若購(gòu)買(mǎi)A種獎(jiǎng)品5件和B種獎(jiǎng)品3件,共需95元.

1)求AB兩種獎(jiǎng)品的單價(jià)各是多少元?

2)學(xué)校計(jì)劃購(gòu)買(mǎi)A、B兩種獎(jiǎng)品共100件,購(gòu)買(mǎi)費(fèi)用不超過(guò)1150元,且A種獎(jiǎng)品的數(shù)量不大于B種獎(jiǎng)品數(shù)量的3倍,設(shè)購(gòu)買(mǎi)A種獎(jiǎng)品m件,購(gòu)買(mǎi)費(fèi)用為W元,寫(xiě)出W(元)與m(件)之間的函數(shù)關(guān)系式.求出自變量m的取值范圍,并確定最少費(fèi)用W的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系中,A(﹣2,5),B(﹣3,2),C(﹣1,1).

1)請(qǐng)畫(huà)出ABC關(guān)于y軸的對(duì)稱圖形ABC,其中A點(diǎn)的對(duì)應(yīng)點(diǎn)是A,B點(diǎn)的對(duì)應(yīng)點(diǎn)是B,C點(diǎn)的對(duì)應(yīng)點(diǎn)是C,并寫(xiě)出A,B,C三點(diǎn)的坐標(biāo).

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ΔABC中,以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,分別交AC、AB于D、E兩點(diǎn),并連接BD、DE.若∠A=30°,AB=AC,則∠BDE的度數(shù)為( )

A.67.5°
B.52.5°
C.45°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為線段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)B、DABBD,EDBD,連接AC、EC.已知AB=2,DE=1BD=8,設(shè)CD=x

1)用含x的代數(shù)式表示AC+CE的長(zhǎng);

2)請(qǐng)問(wèn)點(diǎn)C滿足什么條件時(shí),AC+CE的值最;

3)根據(jù)(2)中的規(guī)律和結(jié)論,請(qǐng)構(gòu)圖求出代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACBD相交于點(diǎn)O,ABCDABCD,則圖中的全等三角形共有( 。

A. 1對(duì)B. 2對(duì)C. 3對(duì)D. 4對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案