【題目】如圖,在矩形ABCD中,E為CD的中點,F(xiàn)為BE上的一點,連結(jié)CF并延長交AB于點M,MN⊥CM交射線AD于點N.
(1)當F為BE中點時,求證:AM=CE;
(2)若 =2,求 的值;
(3)若 =n,當n為何值時,MN∥BE?
【答案】
(1)解:當F為BE中點時,如圖1,則有BF=EF.
∵四邊形ABCD是矩形,
∴AB=DC,AB∥DC,
∴∠MBF=∠CEF,∠BMF=∠ECF.
在△BMF和△ECF中,
,
∴△BMF≌△ECF,
∴BM=EC.
∵E為CD的中點,
∴EC= DC,
∴BM=EC= DC= AB,
∴AM=BM=EC
(2)解:如圖2所示:
設MB=a,
∵四邊形ABCD是矩形,
∴AD=BC,AB=DC,∠A=∠ABC=∠BCD=90°,AB∥DC,
∴△ECF∽△BMF,
∴ =2,
∴EC=2a,
∴AB=CD=2CE=4a,AM=AB﹣MB=3a.
∵ =2,
∴BC=AD=2a.
∵MN⊥MC,
∴∠CMN=90°,
∴∠AMN+∠BMC=90°.
∵∠A=90°,
∴∠ANM+∠AMN=90°,
∴∠BMC=∠ANM,
∴△AMN∽△BCM,
∴ ,
∴ = ,
∴AN= a,ND=AD﹣AN=2a﹣ a= a,
∴ = =3
(3)解:當 =n時,如圖3:
設MB=a.
∵△MFB∽△CFE,
∴ = ,即 ,解得EC=an.
∴AB=2an.
又∵ =n,
∴ ,
∴BC=2a.
∵MN∥BE,MN⊥MC,
∴∠EFC=∠HMC=90°,
∴∠FCB+∠FBC=90°.
∵∠MBC=90°,
∴∠BMC+∠FCB=90°,
∴∠BMC=∠FBC.
∵∠MBC=∠BCE=90°,
∴△MBC∽△BCE,
∴ ,
∴ ,
∴n=4.
【解析】(1)如圖1,易證△BMF≌△ECF,則有BM=EC,然后根據(jù)E為CD的中點及AB=DC就可得到AM=EC;(2)如圖2,設MB=a,易證△ECF∽△BMF,根據(jù)相似三角形的性質(zhì)可得EC=2a,由此可得AB=4a,AM=3a,BC=AD=2a.易證△AMN∽△BCM,根據(jù)相似三角形的性質(zhì)即可得到AN= a,從而可得ND=AD﹣AN= a,就可求出 的值;(3)如圖3,設MB=a,依據(jù)相似三角形的性質(zhì)可得BC=2a,CE=na.由MN∥BE,MN⊥MC可得∠EFC=∠HMC=90°,從而可證到△MBC∽△BCE,然后根據(jù)相似三角形的性質(zhì)即可求出n的值.
【考點精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個角都是直角,矩形的對角線相等.
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解該校七年級學生的身高情況,抽樣調(diào)查了部分同學,將所得數(shù)據(jù)處理后,制成扇形統(tǒng)計圖和頻數(shù)分布直方圖(部分)如下(每組只含最低值不含最高值,身高單位:cm,測量時精確到1cm):
(1)請根據(jù)所提供的信息計算身高在160~165cm范圍內(nèi)的學生人數(shù),并補全頻數(shù)分布直方圖;
(2)樣本的中位數(shù)在統(tǒng)計圖的哪個范圍內(nèi)?
(3)如果上述樣本的平均數(shù)為157cm,方差為0.8;該校八年級學生身高的平均數(shù)為159cm,方差為0.6,那么(填“七年級”或“八年級”)學生的身高比較整齊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】寧波火車站北廣場將于2015年底投入使用,計劃在廣場內(nèi)種植A,B兩種花木共6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一張可以折疊的小床展開后支撐起來放在地面的示意圖,此時點A、B、C在同一直線上,且∠ACD=90°,圖2是小床支撐腳CD折疊的示意圖,在折疊過程中,△ACD變形為四邊形ABC′D′,最后折疊形成一條線段BD″.
(1)小床這樣設計應用的數(shù)學原理是 .
(2)若AB:BC=1:4,則tan∠CAD的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+c(a≠0)與y軸交于點A,與x軸交于B,C兩點(點C在x軸正半軸上),△ABC為等腰直角三角形,且面積為4,現(xiàn)將拋物線沿BA方向平移,平移后的拋物線過點C時,與x軸的另一點為E,其頂點為F,對稱軸與x軸的交點為H.
(1)求a、c的值.
(2)連接OF,試判斷△OEF是否為等腰三角形,并說明理由.
(3)現(xiàn)將一足夠大的三角板的直角頂點Q放在射線AF或射線HF上,一直角邊始終過點E,另一直角邊與y軸相交于點P,是否存在這樣的點Q,使以點P、Q、E為頂點的三角形與△POE全等?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綜合與實踐”學習活動準備制作一組三角形,記這些三角形的三邊分別為a,b,c,并且這些三角形三邊的長度為大于1且小于5的整數(shù)個單位長度.
(1)用記號(a,b,c)(a≤b≤c)表示一個滿足條件的三角形,如(2,3,3)表示邊長分別為2,3,3個單位長度的一個三角形.請列舉出所有滿足條件的三角形.
(2)用直尺和圓規(guī)作出三邊滿足a<b<c的三角形(用給定的單位長度,不寫作法,保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx(a≠0)的圖象經(jīng)過點A(1,4),對稱軸是直線x=﹣ ,線段AD平行于x軸,交拋物線于點D.在y軸上取一點C(0,2),直線AC交拋物線于點B,連結(jié)OA,OB,OD,BD.
(1)求該二次函數(shù)的解析式;
(2)求點B坐標和坐標平面內(nèi)使△EOD∽△AOB的點E的坐標;
(3)設點F是BD的中點,點P是線段DO上的動點,問PD為何值時,將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的 ?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com