【題目】藝術節(jié)期間,學校向學生征集書畫作品,楊老師從全校36個班中隨機抽取了4 個班 (用A,B,C,D表示),對征集到的作品的數(shù)量進行了統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請 根據(jù)相關信息,回答下列問題:
(1)請你將條形統(tǒng)計圖補充完整;并估計全校共征集了_____件作品;
(2)如果全校征集的作品中有4件獲得一等獎,其中有3名作者是男生,1名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求選取的兩名學生恰好是一男一女的概率.
【答案】(1)圖形見解析,216件;(2)
【解析】
(1)由B班級的作品數(shù)量及其占總數(shù)量的比例可得4個班作品總數(shù),再求得D班級的數(shù)量,可補全條形圖,再用36乘四個班的平均數(shù)即估計全校的作品數(shù);
(2)列表得出所有等可能結果,從中找到一男、一女的結果數(shù),根據(jù)概率公式求解可得.
(1)4個班作品總數(shù)為:件,所以D班級作品數(shù)量為:36-6-12-10=8;
∴估計全校共征集作品×36=324件.
條形圖如圖所示,
(2)男生有3名,分別記為A1,A2,A3,女生記為B,
列表如下:
A1 | A2 | A3 | B | |
A1 | (A1,A2) | (A1,A3) | (A1,B) | |
A2 | (A2,A1) | (A2,A3) | (A2,B) | |
A3 | (A3,A1) | (A3,A2) | (A3,B) | |
B | (B,A1) | (B,A2) | (B,A3) |
由列表可知,共有12種等可能情況,其中選取的兩名學生恰好是一男一女的有6種.
所以選取的兩名學生恰好是一男一女的概率為.
科目:初中數(shù)學 來源: 題型:
【題目】小王騎車從甲地到乙地,小李騎車從乙地到甲地,小王的速度小于小李的速度,兩人同時出發(fā),沿同一條公路勻速前進.圖中的折線表示兩人之間的距離與小王的行駛時間之間的函數(shù)關系.
請你根據(jù)圖象進行探究:
(1)小王和小李的速度分別是多少?
(2)求線段所表示的與之間的函數(shù)解析式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰中,.點D,E分別在邊AB,BC上,將線段ED繞點E按逆時針方向旋轉90得到EF.
(1)如圖1,若,點E與點C重合,AF與DC相交于點O.求證:.
(2)已知點G為AF的中點.
①如圖2,若,求DG的長.
②若,是否存在點E,使得是直角三角形?若存在,求CE的長;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,將函數(shù)y=2x2+2的圖象繞坐標原點0順時針旋轉45°后,得到新曲線l.
(1)如圖①,已知點A(-1,a),B(b,10)在函數(shù)y=2x2+2的圖象上,若A’、B’是A、B旋轉后的對應點,連結OA’,OB’,則S△OA’B’=____.
(2)如圖②,曲線與直線相交于點M、N,則S△OMN為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點.如圖,5×5正方形方格紙圖中,點A,B都在格點處.
(1)請在圖中作等腰△ABC,使其底邊AC=2,且點C為格點;
(2)在(1)的條件下,作出平行四邊形ABDC,且D為格點,并直接寫出平行四邊形ABDC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E在正方形ABCD的邊AB上,以BE為邊向正方形ABCD外部作正方形BEFG,連接DF,M、N分別是DC、DF的中點,連接MN.若AB=7,BE=5,則MN=_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題呈現(xiàn)
如圖,四邊形ABCD是矩形,AB=20,BC=10,以CD為一邊向矩形外部作等腰直角△GDC,∠G=90°,點M在線段AB上,且AM=a,點P沿折線AD-DG運動,點Q沿折線BC-CG運動(與點G不重合),在運動過程中始終保持線段PQ//AB.設PQ與AB之間的距離為x.
(1)若a=12.①如圖1,當點P在線段AD上時,若四邊形AMQP的面積為48,則x的值為_________;
②在運動過程中,求四邊形AMQP的最大面積;
(2)如圖2,若點P在線段DG上時,要使四邊形AMQP的面積始終不小于50,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解學生對新聞、體育、娛樂、動畫四類電視節(jié)目的喜愛情況,進行了統(tǒng)計調查隨機調查了某班所有同學最喜歡的節(jié)目每名學生必選且只能選擇四類節(jié)目中的一類并將調查結果繪成如下不完整的統(tǒng)計圖根據(jù)兩圖提供的信息,回答下列問題:
最喜歡娛樂類節(jié)目的有______人,圖中______;
請補全條形統(tǒng)計圖;
根據(jù)抽樣調查結果,若該校有1800名學生,請你估計該校有多少名學生最喜歡娛樂類節(jié)目;
在全班同學中,有甲、乙、丙、丁等同學最喜歡體育類節(jié)目,班主任打算從甲、乙、丙、丁4名同學中選取2人參加學校組織的體育知識競賽,請用列表法或樹狀圖求同時選中甲、乙兩同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.
(1)求證:OF∥BC;
(2)求證:△AFO≌△CEB;
(3)若EB=5cm,CD=cm,設OE=x,求x值及陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com