【題目】我國魏晉時期數(shù)學家劉徽首創(chuàng)“割圓術”計算圓周率.隨著時代發(fā)展,現(xiàn)在人們依據(jù)頻率估計概率這一原理,常用隨機模擬的方法對圓周率π進行估計,用計算機隨機產(chǎn)生m個有序數(shù)對(x,y)(x,y是實數(shù),且0≤x≤1,0≤y≤1),它們對應的點在平面直角坐標系中全部在某一個正方形的邊界及其內(nèi)部.如果統(tǒng)計出這些點中到原點的距離小于或等于1的點有n個,則據(jù)此可估計π的值為 . (用含m,n的式子表示)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形AOCB邊OC在x軸上點B的坐標為(3,1),將此矩形折疊,使點C與點A重合,點B折至點B'處,折痕為EF,則點B'的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達C地的過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關系如圖所示.下列結論:①甲車出發(fā)2h時,兩車相遇;②乙車出發(fā)1.5h時,兩車相距170km;③乙車出發(fā)2 h時,兩車相遇;④甲車到達C地時,兩車相距40km.其中正確的是(填寫所有正確結論的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與y軸交與點C(0,3),與x軸交于A、B兩點,點B坐標為(4,0),拋物線的對稱軸方程為x=1.
(1)求拋物線的解析式;
(2)點M從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點N從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,設△MBN的面積為S,點M運動時間為t,試求S與t的函數(shù)關系,并求S的最大值;
(3)在點M運動過程中,是否存在某一時刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,E,F(xiàn)為BD所在直線上的兩點,若AE= ,∠EAF=135°,則下列結論正確的是( )
A.DE=1
B.tan∠AFO=
C.AF=
D.四邊形AFCE的面積為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD和過點C的切線互相垂直,垂足為D,直線DC與AB的延長線相交于P.弦CE平分∠ACB,交直徑AB于點F,連結BE.
(1)求證:AC平分∠DAB;
(2)探究線段PC,PF之間的大小關系,并加以證明;
(3)若tan∠PCB= ,BE= ,求PF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數(shù)是甲工程隊單獨完成修路任務所需天數(shù)的1.5倍.
(1)求甲、乙兩個工程隊每天各修路多少千米?
(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.
(i)二次項系數(shù)2=1×2;
(ii)常數(shù)項﹣3=﹣1×3=1×(﹣3),驗算:“交叉相乘之和”;
1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5
(iii)發(fā)現(xiàn)第③個“交叉相乘之和”的結果1×(﹣3)+2×1=﹣1,等于一次項系數(shù)﹣1.
即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,則2x2﹣x﹣3=(x+1)(2x﹣3).
像這樣,通過十字交叉線幫助,把二次三項式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com