【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( 。

A. B. C. D.

【答案】D

【解析】

中心對稱圖形繞某一點(diǎn)旋轉(zhuǎn)180°后的圖形與原來的圖形重合,軸對稱圖形被一條直線分割成的兩部分沿著對稱軸折疊時(shí),互相重合,據(jù)此逐一判斷出既是軸對稱圖形又是中心對稱圖形的即可.

A中的圖形旋轉(zhuǎn)180°后不能與原圖形重合,

A中的圖形不是中心對稱圖形,

∴選項(xiàng)A不正確;

B中的圖形旋轉(zhuǎn)180°后能與原圖形重合,

B中的圖形是中心對稱圖形,

B中的圖形是中心對稱圖形,但它不是軸對稱圖形,

∴選項(xiàng)B不正確;

C中的圖形旋轉(zhuǎn)180°后不能與原圖形重合,

C中的圖形不是中心對稱圖形,

∴選項(xiàng)C不正確;

D中的圖形旋轉(zhuǎn)180°后能與原圖形重合,

D中的圖形是中心對稱圖形,

D中的圖形既是軸對稱圖形,又是中心對稱圖形,

∴選項(xiàng)D正確;

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時(shí)加上4的是( 。

A. x22x5 B. x2+4x5 C. 2x24x5 D. 4x2+4x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+4分別交x軸、y軸于點(diǎn)A、B,拋物線過y=ax2+bx+c經(jīng)過A,B兩點(diǎn),點(diǎn)P是線段AB上一動點(diǎn),過點(diǎn)PPCx軸于點(diǎn)C,交拋物線于點(diǎn)D.

(1)若拋物線的解析式為y=﹣x2+x+4,設(shè)其頂點(diǎn)為M,其對稱軸交AB于點(diǎn)N.

①求點(diǎn)M、N的坐標(biāo);

②是否存在點(diǎn)P,使四邊形MNPD為菱形?并說明理由;

(2)當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),是否存在這樣的拋物線,使得以B、P、D為頂點(diǎn)的三角形是直角三角形?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc(a≠0),該函數(shù)y與自變量x的部分對應(yīng)值如下表:

x

1

2

3

y

0

1

0

(1)求該二次函數(shù)的表達(dá)式;

(2)不等式ax2bxc0的解集為 ;

不等式ax2bxc3的解集為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(m,6),B(n,1)在反比例函數(shù)y=的圖象上,ADx軸于點(diǎn)D,BCx軸于點(diǎn)C,點(diǎn)ECD上,CD=5,ABE的面積為10,則點(diǎn)E的坐標(biāo)是(  )

A. (3,0) B. (4,0) C. (5,0) D. (6,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°.

(1)作出經(jīng)過點(diǎn)B,圓心O在斜邊AB上且與邊AC相切于點(diǎn)E的⊙O(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)

(2)設(shè)(1)中所作的⊙O與邊AB交于異于點(diǎn)B的另外一點(diǎn)D,若⊙O的直徑為5,BC=4;求DE的長.(如果用尺規(guī)作圖畫不出圖形,可畫出草圖完成(2)問)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+(m﹣1)x+my軸交點(diǎn)坐標(biāo)是(0,3).

(1)求出m的值;

(2)求拋物線與x軸的交點(diǎn);

(3)當(dāng)x取什么值時(shí),y<0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于反比例函數(shù)y,下列說法不正確的是( 。

A. 函數(shù)圖象分別位于第一、第三象限

B. 當(dāng)x>0時(shí),yx的增大而減小

C. 函數(shù)圖象經(jīng)過點(diǎn)(1,2)

D. 若點(diǎn)Ax1,y1),Bx2,y2)都在函數(shù)圖象上,且x1x2,則y1y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A為函數(shù) 圖象上一點(diǎn),連結(jié)OA,交函數(shù) 的圖象于點(diǎn)B,點(diǎn)Cx軸上一點(diǎn),且AO=AC,求ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案