【題目】如圖,一個(gè)半徑為r的圓形紙片在邊長為a( )的等邊三角形內(nèi)任意運(yùn)動(dòng),則在該等邊三角形內(nèi),這個(gè)圓形紙片“不能接觸到的部分”的面積是( )
A.
B.
C.
D.πr2

【答案】C
【解析】如圖,當(dāng)圓形紙片運(yùn)動(dòng)到與A的兩邊相切的位置時(shí),

過圓形紙片的圓心O1作兩邊的垂線,垂足分別為D,E,
連接AO1,則RtADO1中,O1AD=30,O1D=r,AD=r,
∴SADO1=O1DAD=r2,由此S四邊形ADO1E=2SADO1=r2,
∵由題意,DO1E=120,得S扇形O1DE=r2,
∴圓形紙片“不能接觸到的部分”的面積是3(r2-r2)=()r2 .
所以答案是:C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解切線的性質(zhì)定理(切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如何把多項(xiàng)式x2+8x+15因式分解?

1)觀察:上式能否可直接利用完全平方公式進(jìn)行因式分解? 答:

(閱讀與理解):由多項(xiàng)式乘法,我們知道(x+a)(x+b)=x2+(a+b)x+ab,將該式從右到左地使用,即可對(duì)形如x2+(a+b)x+ab的多項(xiàng)式進(jìn)行因式分解,即:

x2+(a+b)x+ab=(x+a)(x+b)

此類多項(xiàng)式x2+(a+b)x+ab的特征是二次項(xiàng)系數(shù)為1,常數(shù)項(xiàng)為兩數(shù)之積,一次項(xiàng)系數(shù)為這兩數(shù)之和.

2)猜想并填空: x2+8x+15= x2+[( ) +( )]x + ( )×( )=(x+ )(x+ )

3)上面多項(xiàng)式x2+8x+15的因式分解是否正確,我們需要驗(yàn)證.請(qǐng)寫出驗(yàn)證過程.

4)請(qǐng)運(yùn)用上述方法將下列多項(xiàng)式進(jìn)行因式分解:

x2+8x+12 x2-x-12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P為平面內(nèi)一點(diǎn),若點(diǎn)P 到⊙O上的點(diǎn)的最長距離為5,最短距離為1,則⊙O 的半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2015隨州)甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時(shí)出發(fā),勻速行駛,各自到達(dá)終點(diǎn)后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時(shí)間為t(單位:小時(shí)),st之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:

①出發(fā)1小時(shí)時(shí),甲、乙在途中相遇;

②出發(fā)1.5小時(shí)時(shí),乙比甲多行駛了60千米;

③出發(fā)3小時(shí)時(shí),甲、乙同時(shí)到達(dá)終點(diǎn);

④甲的速度是乙速度的一半.

其中,正確結(jié)論的個(gè)數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(-5,0),B(-3,0),點(diǎn)C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點(diǎn)P從點(diǎn)Q(4,0)出發(fā),沿x軸向左以每秒1個(gè)單位長度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)時(shí)間t秒.

(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)∠BCP=15°時(shí),求t的值;
(3)以點(diǎn)P為圓心,PC為半徑的⊙P隨點(diǎn)P的運(yùn)動(dòng)而變化,當(dāng)⊙P與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊華與季紅用5張同樣規(guī)格的硬紙片做拼圖游戲,正面如圖1所示,背面完全一樣,將它們背面朝上攪勻后,同時(shí)抽出兩張.規(guī)則如下:當(dāng)兩張硬紙片上的圖形可拼成電燈或小人時(shí),楊華得1分;當(dāng)兩張硬紙片上的圖形可拼成房子或小山時(shí),季紅得1分(如圖2).問題:游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)說明理由;若你認(rèn)為不公平,如何修改游戲規(guī)則才能使游戲?qū)﹄p方公平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)圖象經(jīng)過點(diǎn)A02),且與正比例函數(shù)y=﹣x的圖象交于點(diǎn)B,B點(diǎn)的橫坐標(biāo)是﹣1

1)求該一次函數(shù)的解析式:

2)求一次函數(shù)圖象、正比例函數(shù)圖象與x軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系中,A(﹣2,5),B(﹣3,2),C(﹣1,1).

1)請(qǐng)畫出ABC關(guān)于y軸的對(duì)稱圖形ABC,其中A點(diǎn)的對(duì)應(yīng)點(diǎn)是A,B點(diǎn)的對(duì)應(yīng)點(diǎn)是B,C點(diǎn)的對(duì)應(yīng)點(diǎn)是C,并寫出A,BC三點(diǎn)的坐標(biāo).

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,AB=6,點(diǎn)DBC邊上的一點(diǎn),點(diǎn)PAB邊上的一點(diǎn),連接PD,以PD為邊作等邊三角形PDE,連接BE

1)如圖1,當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),

找出圖中的一對(duì)全等三角形,并證明;

②BE+BD=;

2)如圖2,若AP=1,請(qǐng)計(jì)算BE+BD的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案