【題目】20191227日,我國(guó)成功發(fā)射了長(zhǎng)征五號(hào)遙三運(yùn)載火箭.如圖,長(zhǎng)征五號(hào)運(yùn)載火箭從地面處垂直向上發(fā)射,當(dāng)火箭到達(dá)處時(shí),從位于地面處的雷達(dá)站測(cè)得此時(shí)仰角,當(dāng)火箭繼續(xù)升空到達(dá)處時(shí),從位于地面處的雷達(dá)站測(cè)得此時(shí)仰角,已知,.

1)求的長(zhǎng);

2)若長(zhǎng)征五號(hào)運(yùn)載火箭在處進(jìn)行程序轉(zhuǎn)彎,且,求雷達(dá)站到其正上方點(diǎn)的距離.

【答案】1km;(2

【解析】

1)設(shè),根據(jù)題意可用含x的代數(shù)式依次表示出AMAC、AN的長(zhǎng),然后在直角△CAN中利用解直角三角形的知識(shí)即可求出x的值,進(jìn)而可得答案;

2)由(1)的結(jié)果可得CN的長(zhǎng),作,垂足為點(diǎn),如圖,根據(jù)題意易得∠DCN和∠DNC的度數(shù),設(shè)HN=y,則可用y的代數(shù)式表示出CH,根據(jù)CH+HN=CN可得關(guān)于y的方程,解方程即可求出y的值,進(jìn)一步即可求出結(jié)果.

解:(1)設(shè)

,

,

,

中,

,AC=AB+BC=x+40,AN=AM+MN=x+120,

,

解得:,

km;

2)作,垂足為點(diǎn),如圖,

由(1)可得,,

,

,

,

CH=DH,

,

設(shè),

,

,

解得:

.

答:雷達(dá)站到其正上方點(diǎn)的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸正半軸相交于A、B兩點(diǎn),軸相交于點(diǎn)C,對(duì)稱軸為直線OA=OC,則下列結(jié)論:①④關(guān)于的方程有一個(gè)根為其中正確的結(jié)論個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,內(nèi)接于,的直徑,上一點(diǎn),弦于點(diǎn),弦于點(diǎn),連接,,且.

1)求證:

2)若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)表示1,現(xiàn)將點(diǎn)沿軸做如下移動(dòng),第一次點(diǎn)向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn),第二次將點(diǎn)向右移動(dòng)6個(gè)單位長(zhǎng)度到達(dá)點(diǎn),第三次將點(diǎn)向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn),按照這種移動(dòng)規(guī)律移動(dòng)下去,第次移動(dòng)到點(diǎn),如果點(diǎn)與原點(diǎn)的距離不小于20,那么的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn)為該二次函數(shù)在第一象限內(nèi)的一點(diǎn),連接,交于點(diǎn),則的最大值為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的方格中,是關(guān)于點(diǎn)為位似中心的位似圖形,點(diǎn).

(1)在圖中標(biāo)出位似中心的位置,并寫出點(diǎn)的坐標(biāo)及的位似比;

(2)以原點(diǎn)為位似中心,軸的右側(cè)畫出的另一個(gè)位似,使它與的位似比為,并寫出點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們可以把一個(gè)假分?jǐn)?shù)寫成一個(gè)整數(shù)加上一個(gè)真分?jǐn)?shù)的形式,=3+.同樣的,我們也可以把某些分式寫成類似的形式,=3+.這種方法我們稱為分離常數(shù)法.

(1)如果=1+,求常數(shù)a的值;

(2)利用分離常數(shù)法,解決下面的問(wèn)題:當(dāng)m取哪些整數(shù)時(shí),分式的值是整數(shù)?

(3)我們知道一次函數(shù)y=x-1的圖象可以看成是由正比例函數(shù)y=x的圖象向下平移1個(gè)單位長(zhǎng)度得到,函數(shù)y=的圖象可以看成是由反比例函數(shù)y=的圖象向左平移1個(gè)單位長(zhǎng)度得到.那么請(qǐng)你分析說(shuō)明函數(shù)y=的圖象是由哪個(gè)反比例函數(shù)的圖象經(jīng)過(guò)怎樣的變換得到?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正比例函數(shù)y=k1x(k1≠0)與反比例函數(shù)的圖象交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,1).

1求正比例函數(shù)、反比例函數(shù)的表達(dá)式;

2)求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,BE平分∠ABC,CF平分∠BCD,E、FAD上,BECF相交于點(diǎn)G,若AB=7,BC=10,則△EFG與△BCG的面積之比為( )

A.4:25B.49:100C.7:10D.2:5

查看答案和解析>>

同步練習(xí)冊(cè)答案