【題目】如圖,直線AB,CD,OE⊥AB,過點O畫直線MN⊥CD. 若點F是直線MN上任意一點(點O除外),且∠AOC=34°.求∠EOF的度數(shù).
【答案】34°或146°
【解析】
當F在OM上時,根據(jù)垂直定義求出∠EOF=∠BOD,根據(jù)對頂角求出∠EOF=∠AOC,即可求出答案;當F在ON上時,求出∠AOM的度數(shù),根據(jù)對頂角求出∠BON的度數(shù),求出∠EOB+∠BON即可.
①當點F在射線OM上時,如圖,
因為 OE⊥AB,MN⊥CD,
所以∠EOB=∠MOD=90°,
所以∠MOE+∠EOD=90°,∠EOD+∠BOD= 90°,
所以∠EOF=∠BOD=∠AOC=34°.
②當點F在射線ON上時,如圖,
因為MN⊥CD,
所以 ∠MOC =∠AOC +∠AOM=90°,
所以 ∠AOM= 90°-34°=56°,
所以∠BON=∠AOM=56°
因為OE⊥AB,所以∠EOB=90°.
所以∠EOF=∠EOB+∠BON= 90°+56°=146°.
綜上,∠EOF的度數(shù)是34°或146°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB、BC、AC三邊的長分別為, , ,求這個三角形的面積.小明同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)△ABC的面積為 .
(2)若△DEF的三邊DE、EF、DF長分別為, , ,請在圖2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并求出△DEF的面積為 .
(3)在△ABC中,AB=2,AC=4,BC=2,以AB為邊向△ABC外作△ABD(D與C在AB異側(cè)),使△ABD為等腰直角三角形,則線段CD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則DF的長等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以邊長為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對角線AC于點E.
(1)線段AE=;
(2)如圖2,以點A為端點作∠DAM=30°,交CD于點M,沿AM將四邊形ABCM剪掉,使Rt△ADM繞點A逆時針旋轉(zhuǎn)(如圖3),設(shè)旋轉(zhuǎn)角為α(0°<α<150°),旋轉(zhuǎn)過程中AD與⊙O交于點F.
①當α=30°時,請求出線段AF的長;
②當α=60°時,求出線段AF的長;判斷此時DM與⊙O的位置關(guān)系,并說明理由;
③當α= 時,DM與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD 相交于點O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度數(shù);
(2)以O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD 相交于點O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度數(shù);
(2)以O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副含 和 角的三角板 和 疊合在一起,邊 與 重合, (如圖1),點 為邊 的中點,邊 與 相交于點 .現(xiàn)將三角板 繞點 按順時針方向旋轉(zhuǎn)(如圖2),在 從 到 的變化過程中,點 相應(yīng)移動的路徑長為 . (結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李從西安通過某快遞公司給在南昌的外婆寄一盒櫻桃,快遞時,他了解到這個公司除收取每次6元的包裝費外,櫻桃不超過1kg收費22元,超過1kg,則超出部分按每千克10元加收費用.設(shè)該公司從西安到南昌快遞櫻桃的費用為y(元),所寄櫻桃為x(kg).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)已知小李給外婆快寄了2.5kg櫻桃,請你求出這次快寄的費用是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com