【題目】如圖21所示,海島上有A,B兩個觀測點,點B在點A的正東方,海島C在觀測點A的正北方,海島D在觀測點B的正北方,從觀測點A看海島C,D的視角∠CAD與從觀測點B看海島C,D的視角∠CBD相等,那么海島C,D到觀測點A,B所在海岸的距離相等嗎?為什么?

【答案】相等,理由見解析.

【解析】

AD,BC相交于點O,由于∠CADCBD,COADOB, 得∠CD.

再根據(jù)∠CABDBA=90°,CD, AB=BA,可判定△CAB≌△DBA,根據(jù)全等三角形的性質可得: CA=DB.

:相等.理由:AD,BC相交于點O.

∵∠CADCBD,COADOB,

∴由三角形內角和定理,得∠CD.

由已知得∠CABDBA=90°.

CABDBA,CD,CABDBA,AB=BA,

∴△CAB≌△DBA(AAS),

CA=DB,

∴海島C,D到觀測點A,B所在海岸的距離相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】圖(1)為一波浪式相框(厚度忽略不計),內部可插入占滿整個相框的照片一張,如圖(2),主視圖(不含圖中虛線部分)為兩端首尾相連的等弧構成,左視圖和俯視圖均為長方形(單位:cm):
(1)圖中虛線部分的長為cm,俯視圖中長方形的長為cm;
(2)求主視圖中的弧所在圓的半徑;
(3)試計算該相框可插入的照片的最大面積(參考數(shù)據(jù):sin22.5°≈ ,cos22.5°≈ ,tan22.5°≈ ,計算結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是直線,OAB上一點,∠AOE是直角,∠FOD=90°,OB平分∠DOC,則圖中與∠DOE互余的角有__________個;與∠DOE互補的角有___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把三角形按如圖所示的規(guī)律拼圖案,其中第個圖案中有4個三角形,第個圖案中有6個三角形,第個圖案中有8個三角形,,按此規(guī)律排列下去,則第個圖案中三角形的個數(shù)為( )

A. 12 B. 14 C. 16 D. 18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習有理數(shù)的乘法后,老師給同學們這樣一道題目:計算:49×(﹣5),看誰算的又快又對,有兩位同學的解法如下:

小明:原式=﹣×5=﹣=﹣249

小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;

(1)對于以上兩種解法,你認為誰的解法較好?

(2)上面的解法對你有何啟發(fā),你認為還有更好的方法嗎?如果有,請把它寫出來;

(3)用你認為最合適的方法計算:19×(﹣8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)如圖1,在正方形ABCD中,點E,H分別在BC,AB上,AE與DH交于O,若AE=DH,求證:AE⊥DH;

(2)如圖2,在正方形ABCD中,點H,E,G,F(xiàn)分別在AB,BC,CD,DA上,EF與GH交于O,若EF=HG,探究線段EF與HG的位置關系,并說明理由;

(3)如圖3所示,在(2)問條件下,若HF∥GE,試探究線段FH、線段EG與線段EF的數(shù)量關系,并說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCD的三個頂點A、B、D均在拋物線y=ax2﹣4ax+3(a<0)上.若點A是拋物線的頂點,點B是拋物線與y軸的交點,則AC長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地出租車計費方法如圖,x(km)表示行駛里程,y(元)表示車費,請根據(jù)圖象解答下列問題:

(1)該地出租車的起步價是 元;

(2)當x>2時,求y與x之間的函數(shù)關系式;

(3)若某乘客有一次乘出租車的里程為18km,則這位乘客需付出租車車費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是邊AB的中點,連接DE,△ADE沿DE折疊后得到△FDE,點F在矩形ABCD的內部,延長DF交于BC于點G.
(1)求證:FG=BG;
(2)若AB=6,BC=4,求DG的長.

查看答案和解析>>

同步練習冊答案