【題目】如圖,已知 B 1, 0 , C 1, 0 , A 為 y 軸正半軸上一點, AB AC ,點 D 為第二象限一動點,E 在 BD 的延長線上, CD 交 AB 于 F ,且BDC BAC .
(1)求證: ABD ACD ;
(2)求證: AD 平分CDE ;
(3)若在 D 點運動的過程中,始終有 DC DA DB ,在此過程中,BAC 的度數是否變化?如果變化,請說明理由;如果不變,請求出BAC 的度數?
【答案】(1)見解析;(2)見解析;(3)∠BAC的度數不變化.∠BAC=60°.
【解析】
(1)根據三角形內角和定理等量代換可得結論;(2)作AM⊥CD于點M,作AN⊥BE于點N,證明△ACM≌△ABN即可;(3)用截長補短法在CD上截取CP=BD,連接AP,證明△ABD≌△ACP,由全等性質可知△ADP是等邊三角形,易知BAC 的度數.
(1)∵∠BDC=∠BAC,∠DFB=∠AFC,
又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,
∴∠ABD=∠ACD;
(2)過點A作AM⊥CD于點M,作AN⊥BE于點N.
則∠AMC=∠ANB=90°.
∵OB=OC,OA⊥BC,
∴AB=AC,
∵∠ABD=∠ACD,
∴△ACM≌△ABN (AAS)
∴AM=AN.
∴AD平分∠CDE.(到角的兩邊距離相等的點在角的平分線上);
(3)∠BAC的度數不變化.
在CD上截取CP=BD,連接AP.
∵CD=AD+BD,
∴AD=PD.
∵AB=AC,∠ABD=∠ACD,BD=CP,
∴△ABD≌△ACP.
∴AD=AP;∠BAD=∠CAP.
∴AD=AP=PD,即△ADP是等邊三角形,
∴∠DAP=60°.
∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.
科目:初中數學 來源: 題型:
【題目】如圖1,已知數軸上,兩點表示的數分別為-9和7.
(1)
(2)點、點分別從點、點出發(fā)同時向右運動,點的速度為每秒4個單位,點的速度為每秒2個單位,經過多少秒,點與點相遇?
(3)如圖2,線段的長度為3個單位,線段的長度為6個單位,線段以每秒4個單位的速度向右運動,同時線段以每秒2個單位的速度向左運動,設運動時間為秒
①為何值時,點恰好在線段的中點處.
②為何值時,的中點與的中點距離2個單位.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△AB C沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=98°,則∠C的度數為( )
A. 40° B. 41° C. 42° D. 43°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】暑假期間,小李同學勤工儉學購進一批礦泉水和運動飲料在運動場進行銷售,其進價與售價如下表:
進價(元/瓶) | 售價(元/瓶) | |
礦泉水 | 0.75 | 2 |
運動飲料 | 3 | 4 |
(1)若小李同學購進礦泉水和運動飲料共 30 瓶,用去了 67.5 元,并且全部售完,問小李同學在該買賣中賺了多少錢?
(2)為了進一步滿足同學們的需求,小李同學決定用不超過 400 元的資金購進礦泉水和運動飲料共200 瓶,問最多購進多少瓶運動飲料?
(3)小李同學賺錢后,為了回報社會,買了一批書籍送給貧困山區(qū)的孩子,如果分給每位孩子 4 本書,那么剩下 10 本書;如果分給每位孩子 5 本書,那么最后一位孩子分得的書不足 4 本,但至少1本,則小李同學買了多少本書?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場對A、B兩款運動鞋的銷售情況進行了為期5天的統(tǒng)計,得到了這兩款運動鞋每天的銷售量及總銷售額統(tǒng)計圖(如圖所示).已知第4天B款運動鞋的銷售量是A款的.
(1)求第4天B款運動鞋的銷售量.
(2)這5天期間,B款運動鞋每天銷售量的平均數和中位數分別是多少?
(3)若在這5天期間兩款運動鞋的銷售單價保持不變,求第3天的總銷售額(銷售額=銷售單價×銷售量).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩家商場以同樣的價格出售同樣的電器,但各自推出的優(yōu)惠方案不同,甲商場規(guī)定:凡超過元的電器,超出的金額按收;乙商場規(guī)定:凡超過元的電器,超出的金額按收取,某顧客購買的電器價格是元.
(1)當時,分別用代數式表示在兩家商場購買電器所需付的費用
(2)當時,該顧客應選擇哪一家商場購買比較合算?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把正方體(圖1)沿著某些棱邊剪開,就可以得到正方體的表面展開圖,如圖2.在圖1正方體中,每個面上都寫了一個含有字母x的整式,相對兩個面上的整式之和都等于4x﹣7,且A+D=0,(說明:A、B、C、D都表示含有字母x的整式)請回答下面問題:
(1)把圖1正方體沿著某些棱邊剪開得到它的表面展開圖2,要剪開 條棱邊;
(2)整式B+C= ;
(3)計算圖2中“D”和“?”所表示的整式(要寫出計算過程).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com