如圖,⊙O的半徑為1,等腰直角三角形ABC的頂點B的坐標為(0,),∠CAB=90°,AC=AB,頂點A在⊙O上運動.
(1)當(dāng)點A在y軸上時,求點C的坐標;
(2)當(dāng)點A運動到y(tǒng)軸的負半軸上時,試判斷直線BC與⊙O位置關(guān)系,并說明理由;
(3)當(dāng)點A在y軸右側(cè)運動時,設(shè)點A的縱坐標為x,△ABC的面積為S,求S與x之間的函數(shù)關(guān)系式,并寫出S的取值范圍;
(4)當(dāng)直線AB與⊙O在第一象限內(nèi)相切時,在坐標軸上是否存在一點P,使得以P、A、B、C為頂點的四邊形是梯形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

【答案】分析:(1)分點A在y軸正半軸和負半軸兩種情況先求出AB的長,再根據(jù)等腰直角三角形的性質(zhì)可得AC=AB,然后寫出點C的坐標即可;
(2)根據(jù)切線的定義判斷即可;
(3)過點A作AD⊥y軸于D,連接OA,利用勾股定理列式表示出AD2,再求出BD,利用勾股定理列式表示出AB2,然后根據(jù)等腰直角三角形的面積等于直角邊平方的一半列式整理即可得解,然后根據(jù)一次函數(shù)的增減性求出S的取值范圍;
(4)連接OA,利用勾股定理列式求出AB,從而得到△ABO是等腰直角三角形,再求出點A、C的坐標,然后利用待定系數(shù)法求出直線AB、AC的解析式,再分①PC∥AB,②PA∥BC,③PB∥AC三種情況分別求出直線PC的解析式,求出與坐標軸的交點,即為點P的坐標.
解答:解:(1)當(dāng)點A在y軸正半軸時,坐標為(0,1)時,
AB=AC=-1,
點C的坐標為(-1,1);
當(dāng)點A在y軸負半軸時,坐標為(0,-1)時,
AB=AC=+1,
點C的坐標為(+1,-1);

(2)∵∠CAB=90°,
∴AB⊥AC,
又∵點A在y軸負半軸,且點A在⊙O上,
∴直線BC與⊙O相切;

(3)如圖,過點A作AD⊥y軸于D,連接OA,
根據(jù)勾股定理,AD2=OA2-OD2=12-x2=1-x2,
∵BD=-x,
∴在Rt△ABD中,AB2=BD2+AD2,
=(-x)2+(1-x2),
=2-2x+x2+1-x2
=-2x+3,
∴等腰直角△ABC的面積為S=AB2=(-2x+3)=-x+
即S=-x+,
∵-<0,
∴S隨x的增大而減小,
又∵⊙O上的點A在y軸右側(cè)運動,點A的縱坐標為x,
∴-1<x<1,
∴-+<S<+;

(4)存在.
如圖,連接OA,∵直線AB與⊙O在第一象限內(nèi)相切,
∴OA⊥AB,
∴AB===1,
∴OA=AB,
∴△AOB是等腰直角三角形,
∴點A(),
∵△ABC是等腰直角三角形,
∴BC=AB=,
∴點C的坐標為(,),
易求直線AB的解析式為y=-x+,
直線AC的解析式為y=x,
①PC∥AB時,設(shè)直線PC的解析式為y=-x+b1
把C(,)代入得,-+b1=,
解得b1=2,
所以,直線PC的解析式為y=-x+2,
令y=0,則-x+2=0,
解得x=2,
此時,點P的坐標為P1(2,0),
令x=0,則y=2,
此時,點P的坐標為P2(0,2),
②PA∥BC時,點P的坐標為P3(0,);
③PB∥AC時,設(shè)直線PC的解析式為y=x+b2,
把點B(0,)代入求得b2=
所以,直線PB的解析式為y=x+,
令y=0,則x+=0,
解得x=-,
此時,點P的坐標為P4(-,0),
綜上所述,存在點P1(2,0),P2(0,2),P3(0,),P4(-,0)使得以P、A、B、C為頂點的四邊形是梯形.
點評:本題是圓的綜合題型,主要考查了等腰直角三角形的性質(zhì),圓的切線的判定,勾股定理,三角形的面積,一次函數(shù)的增減性,梯形的判定,綜合性較強,難度較大,特別是(4)要分情況討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點F是BC的中點,那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標原點重合,在直角坐標系中,把橫坐標、縱坐標都是整數(shù)的點稱為格點,則⊙O上格點有
 
個,設(shè)L為經(jīng)過⊙O上任意兩個格點的直線,則直線L同時經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點,且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊答案