【題目】如圖,在四邊形ABCD中,AB=DC,E、F分別是AD、BC的中點,G、H分別是BD、AC的中點.
(1)求證:四邊形EGFH是菱形;
(2)若AB=4,且BA、CD延長后相交所成的銳角是60°,求四邊形EGFH的面積.
【答案】(1)見解析;(2)
【解析】(1)利用三角形中位線定理即可證明;
(2)由BA、CD延長后相交所成的銳角是60°,菱形EGFH有一個內(nèi)角為60°,將菱形沿較短的對角線分割成兩個全等的等邊三角形,即可求出面積.
(1)∵E是AD的中點,G是BD的中點,
∴EG∥AB,EG=AB,
同理FH∥AB,FH=AB,EH∥CD,EH=CD,FG∥CD,FG=CD
又AB=CD,
∴EG=GF=HF=EH,
∴四邊形EGFH是菱形
(2)BA、CD延長后相交所成的角是60°,由上知∠EGH=60°,
即四邊形EGFH是有一角為60°的菱形,
∵AB=4,
∴EG=2,
∴菱形EGFH的面積為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段,點是線段的中點,先按要求畫圖形,再解決問題.
(1)延長線段至點,使;延長線段至點,使;(尺規(guī)作圖,保留作圖痕跡)
(2)求線段的長度;
(3)若點是線段的中點,求線段的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.
(1)若直線經(jīng)過、兩點,求直線和拋物線的解析式;
(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標(biāo);
(3)設(shè)點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,且、滿足等式,射線從處繞點以度秒的速度逆時針旋轉(zhuǎn).
(1)試求∠AOB的度數(shù).
(2)如圖,當(dāng)射線從處繞點開始逆時針旋轉(zhuǎn),同時射線從處以度/秒的速度繞點順時針旋轉(zhuǎn),當(dāng)他們旋轉(zhuǎn)多少秒時,使得?
(3)如圖,若射線為的平分線,當(dāng)射線從處繞點開始逆時針旋轉(zhuǎn),同時射線從射線處以度秒的速度繞點順時針旋轉(zhuǎn),使得這兩條射線重合于射線處(在的內(nèi)部)時,且,試求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,AD是BC邊上的高.∠BAF=∠CAG=90°,且AB=AF=AC=AG.連接FG,交DA的延長線于點E,連接BG,CF.下列結(jié)論:①∠FAG+∠BAC=180°;②BG=CF;③BG⊥CF;④∠EAF=∠ABC.其中一定正確的個數(shù)是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC,點D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點F.
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B.
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com