【題目】如圖,在△ABC中,AB=AC,DE是過點A的直線,BD⊥DE于D,CE⊥DE于點E;
(1)若B、C在DE的同側(cè)(如圖所示)且AD=CE.求證:AB⊥AC;
(2)若B、C在DE的兩側(cè)(如圖所示),其他條件不變,AB與AC仍垂直嗎?若是請給出證明;若不是,請說明理由.
【答案】
(1)證明:∵BD⊥DE,CE⊥DE,
∴∠ADB=∠AEC=90°,
在Rt△ABD和Rt△ACE中,
∵ ,
∴Rt△ABD≌Rt△CAE.
∴∠DAB=∠ECA,∠DBA=∠ACE.
∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,
∴∠BAD+∠CAE=90°.
∠BAC=180°﹣(∠BAD+∠CAE)=90°.
∴AB⊥AC
(2)解:AB⊥AC.理由如下:
同(1)一樣可證得Rt△ABD≌Rt△ACE.
∴∠DAB=∠ECA,∠DBA=∠EAC,
∵∠CAE+∠ECA=90°,
∴∠CAE+∠BAD=90°,即∠BAC=90°,
∴AB⊥AC.
【解析】(1)由已知條件,證明ABD≌△ACE,再利用角與角之間的關(guān)系求證∠BAD+∠CAE=90°,即可證明AB⊥AC;(2)同(1),先證ABD≌△ACE,再利用角與角之間的關(guān)系求證∠BAD+∠CAE=90°,即可證明AB⊥AC.
【考點精析】利用全等三角形的性質(zhì)對題目進行判斷即可得到答案,需要熟知全等三角形的對應(yīng)邊相等; 全等三角形的對應(yīng)角相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列3×3網(wǎng)格圖都是由9個相同的小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:
(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形.
(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形.
(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.
(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)的圖象交于點A.
(1)求點A的坐標(biāo);
(2)設(shè)x軸上有一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交和的圖象于點B、C,連接OC.若BC=OA,求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,天平右盤中的每個砝碼的質(zhì)量都是1克,則物體A的質(zhì)量m克的取值范圍表示在數(shù)軸上為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x、y的二元一次方程組 ,
(1)求這個方程組的解(用含m的式子表示);
(2)若這個方程組的解x,y滿足2x﹣y>1成立,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從標(biāo)號分別為1,2,3,4,5的5張卡片中,隨機抽取1張,下列事件中,必然事件是( )
A. 該卡片標(biāo)號小于6 B. 該卡片標(biāo)號大于6
C. 該卡片標(biāo)號是奇數(shù) D. 該卡片標(biāo)號是3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下: 甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填寫下表:
平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | 8 | 0.4 | |
乙 | 9 | 3.2 |
(2)教練根據(jù)這5次成績,選擇甲參加射擊比賽,教練的理由是什么?
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差 . (填“變大”、“變小”或“不變”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN是四邊形AMBN的對稱軸,點P是直線MN上的點,下列判斷錯誤的是( )
A.AM=BM
B.AP=BN
C.∠MAP=∠MBP
D.∠ANM=∠BNM
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com