在一次數(shù)學探究性學習活動中,某學習小組要制作一個圓錐體模型,操作規(guī)則是:在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓,使得扇形圍成圓錐的側面時,圓恰好是該圓錐的底面.他們首先設計了如圖所示的方案一,發(fā)現(xiàn)這種方案不可行,于是他們調整了扇形和圓的半徑,設計了如圖所示的方案二.(兩個方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切.方案一中扇形的弧與正方形的兩邊相切)
(1)請說明方案一不可行的理由;
(2)判斷方案二是否可行?若可行,請確定圓錐的母線長及其底面圓半徑;若不可行,請說明理由.

解:(1)理由如下:
∵扇形的弧長=16×=8π,圓錐底面周長=2πr,∴圓的半徑為4cm.
由于所給正方形紙片的對角線長為cm,而制作這樣的圓錐實際需要正方形紙片的對角線長為cm,,
∴方案一不可行.
(2)方案二可行.求解過程如下:
設圓錐底面圓的半徑為rcm,圓錐的母線長為Rcm,則
, ①      . ②   
由①②,可得. 故所求圓錐的母線長為cm,底面圓的半徑為cm.

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年初中畢業(yè)升學考試(江蘇南通卷)數(shù)學(解析版) 題型:解答題

在一次數(shù)學探究性學習活動中,某學習小組要制作一個圓錐體模型,操作規(guī)則是:在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓,使得扇形圍成圓錐的側面時,圓恰好是該圓錐的底面.他們首先設計了如圖所示的方案一,發(fā)現(xiàn)這種方案不可行,于是他們調整了扇形和圓的半徑,設計了如圖所示的方案二.(兩個方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切.方案一中扇形的弧與正方形的兩邊相切)

(1)請說明方案一不可行的理由;

(2)判斷方案二是否可行?若可行,請確定圓錐的母線長及其底面圓半徑;若不可行,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇中考真題 題型:解答題

在一次數(shù)學探究性學習活動中,某學習小組要制作一個圓錐體模型,操作規(guī)則是:在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓,使得扇形圍成圓錐的側面時,圓恰好是該圓錐的底面,他們首先設計了如圖所示的方案一,發(fā)現(xiàn)這種方案不可行,于是他們調整了扇形和圓的半徑,設計了如圖所示的方案二。(兩個方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切,方案一中扇形的弧與正方形的兩邊相切)
(1)請說明方案一不可行的理由;
(2)判斷方案二是否可行?若可行,請確定圓錐的母線長及其底面圓半徑;若不可行,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在一次數(shù)學探究性學習活動中,某學習小組要制作一個圓錐體模型,操作規(guī)則是:在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓,使得扇形圍成圓錐的側面時,圓恰好是該圓錐的底面.他們首先設計了如圖所示的方案一,發(fā)現(xiàn)這種方案不可行,于是他們調整了扇形和圓的半徑,設計了如圖所示的方案二.(兩個方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切.方案一中扇形的弧與正方形的兩邊相切)

(1)請說明方案一不可行的理由;

(2)判斷方案二是否可行?若可行,請確定圓錐的母線長及其底面圓半徑;若不可行,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在一次數(shù)學探究性學習活動中, 某學習小組要制作一個圓錐體模型, 操作規(guī)則是: 在一塊邊長為16cm的正方形紙片上剪出一個扇形和一個圓,使得扇形圍成圓錐的側面時,圓恰好是該圓錐的底面。他們首先設計了如圖所示的方案一,發(fā)現(xiàn)這種方案不可行,于是他們調整了扇形和圓的半徑,設計了如圖所示的方案二。(兩個方案的圖中,圓與正方形相鄰兩邊及扇形的弧均相切。方案一中扇形的弧與正方形的兩邊相切)

(1)請說明方案一不可行的理由。

(2)判斷方案二是否可行?若可行,請確定圓錐的母線長及其底面圓半徑;若不可行,請說明理由。

查看答案和解析>>

同步練習冊答案