【題目】如圖,在矩形ABCD中,AB6,AD8,以BC為斜邊在矩形的外部作直角三角形BEC,點(diǎn)FCD的中點(diǎn),則EF的最大值為(  )

A. 8B. 9C. 10D. 2

【答案】B

【解析】

BC中點(diǎn)O,連接OE,OF,根據(jù)矩形的性質(zhì)可求OCCF的長,根據(jù)勾股定理可求OF的長,根據(jù)直角三角形的性質(zhì)可求OE的長,根據(jù)三角形三邊關(guān)系可求得當(dāng)點(diǎn)O,點(diǎn)E,點(diǎn)F共線時(shí),EF有最大值,即EF=OE+OF

解:如圖,取BC中點(diǎn)O,連接OE,OF

∵四邊形ABCD是矩形,

AB=CD=6AD=BC=8,∠C=90°,

∵點(diǎn)FCD中點(diǎn),點(diǎn)OBC的中點(diǎn),

CF=3,CO=4,

OF==5,

∵點(diǎn)ORtBCE的斜邊BC的中點(diǎn),

OE=OC=4,

∵根據(jù)三角形三邊關(guān)系可得:OE+OFEF,

∴當(dāng)點(diǎn)O,點(diǎn)E,點(diǎn)F共線時(shí),EF最大值為OE+OF=4+5=9

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

1)若此方程的一個(gè)根為1,求的值;

2)求證:不論取何實(shí)數(shù),此方程都有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)了一次函數(shù)圖像后,張明、李麗和王林三位同學(xué)在趙老師的指導(dǎo)下,對一次函數(shù)進(jìn)行了探究學(xué)習(xí),請根據(jù)他們的對話解答問題.

(1)張明:當(dāng)時(shí),我能求出直線與軸的交點(diǎn)坐標(biāo)為 ;

李麗:當(dāng)時(shí),我能求出直線與坐標(biāo)軸圍成的三角形的面積為 ;

(2)王林:根據(jù)你們的探究,我發(fā)現(xiàn)無論取何值,直線總是經(jīng)過一個(gè)固定的點(diǎn),請求出這個(gè)定點(diǎn)的坐標(biāo).

(3)趙老師:我來考考你們,如果點(diǎn)的坐標(biāo)為,該點(diǎn)到直線的距離存在最大值嗎?若存在,試求出該最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線:y=ax2+bx+c(a<0)經(jīng)過A(2,4)、B(﹣1,1)兩點(diǎn),頂點(diǎn)坐標(biāo)為(h,k),則下列正確結(jié)論的序號是( 。

①b>1;②c>2;③h>;④k≤1.

A. ①②③④ B. ①②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,延長AB至點(diǎn)F,連結(jié)CF,使得CF=AF,過點(diǎn)AAEFC于點(diǎn)E.

1)求證:AD=AE.

2)連結(jié)CA,若∠DCA=70°,求∠CAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩漁船同時(shí)從港口O出發(fā)外出捕魚,乙沿南偏東30°方向以每小時(shí)10海里的速度航行,甲沿南偏西75°方向以每小時(shí)10海里的速度航行,當(dāng)航行1小時(shí)后,甲在A處發(fā)現(xiàn)自己的漁具掉在乙船上,于是迅速改變航向和速度,仍以勻速沿南偏東60°方向追趕乙船,正好在B處追上.則甲船追趕乙船的速度為________海里/小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由6個(gè)大小相同的小正方形組成的方格中,設(shè)每個(gè)小正方形的邊長均為1.

1)如圖①,,,是三個(gè)格點(diǎn)(即小正方形的頂點(diǎn)),判斷的位置關(guān)系,并說明理由;

2)如圖②,連接三格和兩格的對角線,求的度數(shù)(要求:畫出示意圖,并寫出證明過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點(diǎn),BE=BA.下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正確的有( ) 個(gè)

A. 1 B. 2 C. 3 D.4

查看答案和解析>>

同步練習(xí)冊答案