【題目】如圖,四邊形ABCD為正方形,點(diǎn)A坐標(biāo)為(0,1),點(diǎn)B坐標(biāo)為(0,﹣2),反比例函數(shù)k≠0)的圖象經(jīng)過點(diǎn)C,一次函數(shù)yax+ba≠0)的圖象經(jīng)過AC兩點(diǎn)

(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;

(2)若點(diǎn)P是反比例函數(shù)k≠0)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,P點(diǎn)的坐標(biāo)

【答案】(1),y=﹣x+1;(2)(18,)或(﹣18,).

【解析】

(1)先根據(jù)A點(diǎn)和B點(diǎn)坐標(biāo)得到正方形的邊長,BC=3,于是可得到C(3,-2),然后利用待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式;

(2)設(shè)P(t,),根據(jù)三角形面積公式和正方形面積公式得到=33,然后解絕對(duì)值方程求出可得到P點(diǎn)坐標(biāo).

解:

(1)∵點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B的坐標(biāo)為(0,﹣2),∴AB=1+2=3.

∵四邊形ABCD為正方形,∴Bc=3,∴C(3,﹣2),把C(3,﹣2)代入y=k=3×(﹣2)=﹣6,∴反比例函數(shù)解析式為y=﹣,把C(3,﹣2),A(0,1)代入y=ax+b,解得,∴一次函數(shù)解析式為y=﹣x+1;

(2)設(shè)P(t,﹣).

∵△OAP的面積恰好等于正方形ABCD的面積,∴×1×|t|=3×3,解得t=18t=﹣18,∴P點(diǎn)坐標(biāo)為(18,)或(﹣18,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊ADx軸平行,A、B兩點(diǎn)的橫坐標(biāo)分別為13,反比例函數(shù)y=的圖象經(jīng)過A、B兩點(diǎn),則菱形ABCD的面積是( 。

A. 4 B. 4 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的轉(zhuǎn)盤,分成三個(gè)相同的扇形,指針位置固定轉(zhuǎn)動(dòng)轉(zhuǎn)盤后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢,并相?yīng)得到一個(gè)數(shù)(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).

(1)求事件轉(zhuǎn)動(dòng)一次,得到的數(shù)恰好是0”發(fā)生的概率;

(2)寫出此情景下一個(gè)不可能發(fā)生的事件.

(3)用樹狀圖或列表法,求事件轉(zhuǎn)動(dòng)兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對(duì)值相等發(fā)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當(dāng)△DCE旋轉(zhuǎn)至點(diǎn)A,D,E在同一直線上,連接BE,易證△BCE≌△ACD.則

①∠BEC=______°;②線段AD、BE之間的數(shù)量關(guān)系是______.

(2)拓展研究:

如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.

(3)探究發(fā)現(xiàn):

如圖3,P為等邊△ABC內(nèi)一點(diǎn),且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有三張正面分別標(biāo)有數(shù)字:﹣1,1,2的卡片它們除數(shù)字不同外其余全部相同現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽出一張記下數(shù)字

(1)請(qǐng)用列表或畫樹狀圖的方法只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結(jié)果;

(2)將第一次抽出的數(shù)字作為點(diǎn)的橫坐標(biāo)x,第二次抽出的數(shù)字作為點(diǎn)的縱坐標(biāo)y,求點(diǎn)xy落在雙曲線上的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)物學(xué)家通過大量的調(diào)查估計(jì)出,某種動(dòng)物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動(dòng)物活到25歲的概率為多少?現(xiàn)年25歲的這種動(dòng)物活到30歲的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=90°,OM∠AOB的平分線,按以下要求解答問題:

1)如圖1,將三角板的直角頂點(diǎn)P在射線OM上移動(dòng),兩直角邊分別與OA,OB交于點(diǎn)C,D

比較大。PC______PD(選擇“>”“<”“=”填空);

證明中的結(jié)論.

2)將三角板的直角頂點(diǎn)P在射線OM上移動(dòng),一直角邊與邊OA交于點(diǎn)C,且OC=1,另一直角邊與直線OB,直線OA分別交于點(diǎn)DE,當(dāng)以PC,E為頂點(diǎn)的三角形與△OCD相似時(shí),試求的長.(提示:請(qǐng)先在備用圖中畫出相應(yīng)的圖形,再求的長).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“測量物體的高度”活動(dòng)中某數(shù)學(xué)興趣小組的3名同學(xué)選擇了測量學(xué)校里的兩棵樹的高度,在同一時(shí)刻的陽光下他們分別做了以下工作

小芳測得一根長為1米的竹竿的影長為0.8;

小麗測量甲樹的影長為4如圖1);

小華發(fā)現(xiàn)乙樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上如圖2),墻壁上的影長為1.2,落在地面上的影長為2.4

(1)請(qǐng)直接寫出甲樹的高度為   ;

(2)求乙樹的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AD與塔CB之間的距離AC長為27m,某人在樓底A處測得塔頂?shù)难鼋菫?/span>60°,爬到樓頂D處測得塔頂B的仰角為30°,分別求大樓AD的高與塔BC的高結(jié)果精確到0.1m,參考數(shù)據(jù):≈2.24,≈1.732,≈1.414)

查看答案和解析>>

同步練習(xí)冊(cè)答案