知識遷移
當(dāng)且時,因為≥,所以≥,從而≥(當(dāng)時取等號).
記函數(shù),由上述結(jié)論可知:當(dāng)時,該函數(shù)有最小值為
直接應(yīng)用
已知函數(shù)與函數(shù), 則當(dāng)____時,取得最小值為___.
變形應(yīng)用
已知函數(shù)與函數(shù),求的最小值,并指出取得
該最小值時相應(yīng)的的值.
實(shí)際應(yīng)用
已知某汽車的一次運(yùn)輸成本包含以下三個部分:一是固定費(fèi)用,共元;二是燃油費(fèi),每千
米為元;三是折舊費(fèi),它與路程的平方成正比,比例系數(shù)為.設(shè)該汽車一次運(yùn)輸?shù)穆?/p>
程為千米,求當(dāng)為多少時,該汽車平均每千米的運(yùn)輸成本最低?最低是多少元?
直接應(yīng)用 1, 2
變形應(yīng)用 ∵
∴有最小值為,
當(dāng),即時取得該最小值
實(shí)際應(yīng)用
解:設(shè)該汽車平均每千米的運(yùn)輸成本為元,則
,
∴當(dāng)(千米)時, 該汽車平均每千米的運(yùn)輸成本最低
最低成本為元.
【解析】直接運(yùn)用:可以直接套用題意所給的結(jié)論,即可得出結(jié)果.
變形運(yùn)用:先得出y2/y1 的表達(dá)式,然后將(x+1)看做一個整體,繼而再運(yùn)用所給結(jié)論即可.
實(shí)際運(yùn)用:設(shè)行駛x千米的費(fèi)用為y,則可表示出平均每千米的運(yùn)輸成本,利用所給的結(jié)論即可得出答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
x |
| ||
|
a |
a |
x |
a |
x |
a |
a |
a |
x |
a |
a |
1 |
x |
y2 |
y1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇鹽城卷)數(shù)學(xué)(帶解析) 題型:解答題
知識遷移
當(dāng)且時,因為≥,所以≥,從而≥(當(dāng)時取等號).
記函數(shù),由上述結(jié)論可知:當(dāng)時,該函數(shù)有最小值為
直接應(yīng)用
已知函數(shù)與函數(shù), 則當(dāng)____時,取得最小值為___.
變形應(yīng)用
已知函數(shù)與函數(shù),求的最小值,并指出取得
該最小值時相應(yīng)的的值.
實(shí)際應(yīng)用
已知某汽車的一次運(yùn)輸成本包含以下三個部分:一是固定費(fèi)用,共元;二是燃油費(fèi),每千
米為元;三是折舊費(fèi),它與路程的平方成正比,比例系數(shù)為.設(shè)該汽車一次運(yùn)輸?shù)穆?br />程為千米,求當(dāng)為多少時,該汽車平均每千米的運(yùn)輸成本最低?最低是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:江蘇中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
知識遷移
當(dāng)且時,因為≥,所以≥,
從而≥(當(dāng)時取等號).
記函數(shù),由上述結(jié)論可知:當(dāng)時,該函數(shù)有最小值為.
直接應(yīng)用
已知函數(shù)與函數(shù), 則當(dāng)_________時,取得最小值為_________.
變形應(yīng)用
已知函數(shù)與函數(shù),求的最小值,并指出取得該最小值時相應(yīng)的的值.
實(shí)際應(yīng)用
已知某汽車的一次運(yùn)輸成本包含以下三個部分:一是固定費(fèi)用,共元;二是燃油費(fèi),每千米為元;三是折舊費(fèi),它與路程的平方成正比,比例系數(shù)為.設(shè)該汽車一次運(yùn)輸?shù)穆烦虨?sub>千米,求當(dāng)為多少時,該汽車平均每千米的運(yùn)輸成本最低?最低是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com