【題目】如圖,在平面直角坐標系中,原點O是矩形OABC的一個頂點,點A、C都
在坐標軸上,點B的坐標是(4.2),反比例函數(shù)與AB,BC分別交于點D,E。
(1)求直線DE的解析式;
(2)若點F為y軸上一點,△OEF和△ODE的面積相等,求點F的坐標。
【答案】(1). (2)F的坐標為(0,3)或(0,-3).
【解析】試題分析:(1)先求出D、E的坐標,然后用待定系數(shù)法即可求出直線的解析式;
(2)先求出△ODE的面積,然后由△OEF和△ODE的面積相等,求出OF的長,即可得到結論.
試題解析:解:(1)由B(4,2)知,點D的橫坐標是4,點E的縱坐標是2,
又∵點D,E都在的圖象上,∴D(4,1),E(2,2).
設直線DE的解析式為,把D(4,1),E(2,2)代入,得:
解得:
∴直線DE的解析式為.
(2)∵D(4,1),E(2,2),B(4,2),
∴S△ODE= S矩形OABC - S△OCE - S△BDE- S△OAD =3.
∵點F為y軸上一點,S△OEF=S△ODE,
∴S△OEF.
∴OF=3.
∴F的坐標為(0,3)或(0,-3).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABE中,AB⊥AE以AB為直徑作⊙O,交BE于C,弦CD⊥AB,F為AE上一點,連FC,則FC=FE
(1)求證:CF是⊙O的切線;
(2)已知點P為⊙O上一點,且tan∠APD=,連CP,求sin∠CPD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司計劃從兩家皮具生產(chǎn)能力相近的制造廠選擇一家來承擔外銷業(yè)務,這兩家廠生產(chǎn)的皮具款式和材料都符合要求,因此只需要檢測皮具質量的克數(shù)是否穩(wěn)定,現(xiàn)從兩家提供的樣品中各抽取了6件進行檢查,超過標準質量部分記為正數(shù),不足部分記為負數(shù),若該皮具的標準質量為500克,測得它們質量如下(單位:g)
廠家 | 超過標準質量的部分 | |||||
甲 | ﹣3 | 0 | 0 | 1 | 2 | 0 |
乙 | ﹣2 | 1 | ﹣1 | 0 | 1 | 1 |
(1)分別計算甲、乙兩廠抽樣檢測的皮具總質量各是多少克?
(2)通過計算,你認為哪一家生產(chǎn)皮具的質量比較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=mx與雙曲線y=交于A、B兩點,D為x軸上一點,連接BD交y軸與點C,若C(0,-2)恰好為BD中點,且△ABD的面積為6,則B點坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了了解八年級學生的業(yè)余愛好,抽查了部分學生,并制如下表格和條形統(tǒng)計圖:
頻數(shù) | 頻率 | |
體育 | 25 | 0.25 |
美術 | 30 | a |
音樂 | b | 0.35 |
其他 | 10 | 0.1 |
請根據(jù)圖完成下面題目:
(1)抽查人數(shù)為_____人,a=_____.
(2)請補全條形統(tǒng)計圖;
(3)若該校八年級有800人,請你估算該校八年級業(yè)余愛好音樂的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某新店開業(yè)宣傳,進店有禮活動,店員們需準備制作圓柱體禮品紙盒(如圖①),每個紙盒由1個長方形側面和2個圓形底面組成,現(xiàn)有100張正方形紙板全部以A或者B方法截剪制作(如圖②),設截剪時x張用A方法.
(1)根據(jù)題意,完成以下表格:
裁剪法A | 裁剪法B | |
長方形側面 | x |
|
圓形底面 |
| 0 |
(2)若裁剪出的長方形側面和圓形底面恰好用完,問能做多少個紙盒?
(3)按以上制作方法,若店員們希望準備300個禮盒,那至少還需要正方形紙板 張.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,如果此時熱氣球C處的
高度CD為100m,點A、D、B在同一直線上,CD⊥AB,則A、B兩點的距離是( )
A. 200m B. 200m C. m D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店用1050元購進第一批某種鋼筆,很快賣完,又用1440元購進第二批該種鋼筆,但第二批每支鋼筆的進價是第一批進價的1.2倍,數(shù)量比第一批多了10支。
(1)求第一批每支鋼筆的進價是多少元?
(2)第二批鋼筆按24元/支的價格銷售,銷售一定數(shù)量后,根據(jù)市場情況,商店決定對剩余的鋼筆全按8折一次性打折銷售,但要求第二批鋼筆的利潤率不低于20%,問至少銷售多少支后開始打折?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(材料閱讀)數(shù)軸是數(shù)學學習的一個很重要的工具,利用數(shù)軸可以將數(shù)與形完美結合.通過數(shù)軸我們可發(fā)現(xiàn)許多重要的規(guī)律:
①對值的幾何意義:一般地,若點、點在數(shù)軸上表示的有理數(shù)分別為,,那么、兩點之間的距離表示為,記作,則表示數(shù)和1在數(shù)軸上對應的兩點之間的距離;又如,所以表示數(shù)和在數(shù)軸上對應的兩點之間的距離;
②若數(shù)軸上點、點表示的數(shù)分別為、,那么線段的中點表示的數(shù)為.
(問題情境)如圖,在數(shù)軸上,點表示的數(shù)為,點在原點右側,表示的數(shù)為,動點從點出發(fā)以每秒個單位長度的速度沿數(shù)軸正方向運動,同時,動點從點出發(fā)以每秒個單位長度的速度沿數(shù)軸負方向運動,其中線段的中點記作點.
(綜合運用)
(1)出發(fā)秒后,點和點相遇,則表示的數(shù)___________;
(2)在第(1)問的基礎上,當時,求運動時間;
(3)在第(1)問的基礎上,點、在相遇后繼續(xù)以原來的速度在這條數(shù)軸上運動,但、兩點運動的方向相同.隨著點、的運動,線段的中點也相應移動,問線段的中點能否與表示的點重合?若能,求出從、相遇起經(jīng)過的運動時間;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com