【題目】如圖,將ABCDAD邊延長至點E,使DEAD,連接CE,FBC邊的中點,連接FD

(1)求證:四邊形CEDF是平行四邊形;

(2)AB3,AD4,∠A60°,求CE的長.

【答案】(1)證明見解析;(2)CE.

【解析】

(1)利用平行四邊形的性質得出AD=BC,ADBC,進而利用已知得出DE=FCDEFC,進而得出答案;

(2)首先過點DDNBC于點N,再利用平行四邊形的性質結合勾股定理得出DF的長,進而得出答案.

(1)∵四邊形ABCD是平行四邊形,

∴ADBC,AD∥BC

∵DEAD,FBC邊的中點,

∴DEFC,DE∥FC,

四邊形CEDF是平行四邊形;

(2)過點DDN⊥BC于點N,

四邊形ABCD是平行四邊形,∠A60°,

∴∠BCD∠A60°,

∵AB3,AD4,

∴FC2,NCDCDN,

∴FN,則DFEC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.

1)甲、乙兩種書柜每個的價格分別是多少元?

2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學校至多能夠提供資金4320元,請設計幾種購買方案供這個學校選擇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面上有線段AB和點C,按下列語句要求畫圖與填空:

1)作射線AC;

2)用尺規(guī)在線段AB的延長線上截取BD=AC;

3)連接BC

4)有一只螞蟻想從點A爬到點B,它應該沿路徑(填序號)______(①AB,)爬行最近,這樣爬行所運用到的數(shù)學原理是_____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀思考

我們知道,在數(shù)軸上|a|表示數(shù)a所對應的點到原點的距離,這是絕對值的幾何意義,由此我們可進一步地來研究數(shù)軸上任意兩個點之間的距離,一般地,如果數(shù)軸上兩點A、B 對立的數(shù)用a,b表示,那么這兩個點之間的距離AB=|a﹣b|.也可以用兩點中右邊的點所表示數(shù)的減去左邊的點所表示的數(shù)來計算,例如:數(shù)軸上P,Q兩點表示的數(shù)分別是﹣1和2,那么P,Q兩點之間的距離就是 PQ=2﹣(﹣1)=3.

啟發(fā)應用

如圖,點A在數(shù)軸上對應的數(shù)為a,點B對應的數(shù)為b,且a、b滿足|a+3|+(b﹣2)2=0

(1)求線段AB的長;

(2)如圖,點C在數(shù)軸上對應的數(shù)為x,且x是方程2x+1=x﹣8的解,

①求線段BC的長;

②在數(shù)軸上是否存在點P使PA+PB=BC?若存在,直接寫出點P對應的數(shù):若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在AOB中,ABO=90°,OB=4,AB=8,反比例函數(shù)y=在第一象限內的圖象分別交OA,AB于點C和點D,且BOD的面積SBOD=4.

(1)求反比例函數(shù)解析式;

(2)求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項,得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯誤變形的個數(shù)是(  )個

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知邊長為3的正方形ABCD中,點E在射線BC上,且BE=2CE,連接AE交射線DC于點F,若ABE沿直線AE翻折,點B落在點B1處.

(1)如圖1,若點E在線段BC上,求CF的長;

(2)求sinDAB1的值;

(3)如果題設中“BE=2CE”改為=x”,其它條件都不變,試寫出ABE翻折后與正方形ABCD公共部分的面積yx的關系式及自變量x的取值范圍(只要寫出結論,不需寫出解題過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1直角三角板的直角頂點O在直線AB上,OC,OD是三角板的兩條直角邊,射線OE平分∠AOD

1)若∠COE40°,則∠BOD

2)若∠COEα,求∠BOD(請用含α的代數(shù)式表示);

3)當三角板繞O逆時針旋轉到圖2的位置時,其它條件不變,試猜測∠COE與∠BOD之間有怎樣的數(shù)量關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】連接多邊形任意兩個不相鄰頂點的線段稱為多邊形的對角線.

(1)

對角線條數(shù)分別為      、   、   

(2)n邊形可以有20條對角線嗎?如果可以,求邊數(shù)n的值;如果不可以,請說明理由.

(3)若一個n邊形的內角和為1800°,求它對角線的條數(shù).

查看答案和解析>>

同步練習冊答案