【題目】某市居民使用自來水按如下標準收費(水費按月繳納)
月用水量 | 單價 |
不超過的部分 | 元 |
超過但不超過的部分 | 元 |
超過的部分 | 元 |
(1)當(dāng)時,某用戶用了水,求該用戶這個月應(yīng)該繳納的水費;
(2)設(shè)某用戶用水量為立方米,求該用戶應(yīng)繳納的水費(用含的式子表達)
【答案】(1)該用戶這個月應(yīng)該繳納的水費為33元;(2)當(dāng)時,該用戶應(yīng)繳納的水費為元;當(dāng),該用戶應(yīng)繳納的水費為元;當(dāng)時,該用戶應(yīng)繳納的水費為元.
【解析】
(1)根據(jù)收費標準分兩部分計算即可得;
(2)根據(jù)收費標準,將n的取值范圍分三種情況,然后分別列出代數(shù)式即可.
(1)由收費標準得:應(yīng)繳納的水費為(元)
答:該用戶這個月應(yīng)該繳納的水費為33元;
(2)由題意,將用水量n分以下三種情況:
①當(dāng)時,該用戶應(yīng)繳納的水費為(元)
②當(dāng),該用戶應(yīng)繳納的水費為(元)
③當(dāng)時,該用戶應(yīng)繳納的水費為(元)
答:當(dāng)時,該用戶應(yīng)繳納的水費為元;當(dāng),該用戶應(yīng)繳納的水費為元;當(dāng)時,該用戶應(yīng)繳納的水費為元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過點A,點A在第四象限,過點A作AH⊥x軸,垂足為點H,點A的橫坐標為3,且△AOH的面積為3.
(1)求正比例函數(shù)的表達式;
(2)在x軸上能否找到一點M,使△AOM是等腰三角形?若存在,求點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C分別是線段A1B、B1C、C1A的中點,若△A1BlC1的面積是14,那么△ABC的面積是( 。
A.2B.C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長BE=20cm,寬AB=10cm,高AD=15cm,點M在CH上,且CM=5cm,一只螞蟻如果要沿著長方體的表面從點A爬到點M,需要爬行的最短距離是多少?
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個,比賽結(jié)束后隨機抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計圖的一部分.
組別 | 正確字數(shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息解決下列問題:
(1)在統(tǒng)計表中,m= ,n= ,并補全條形統(tǒng)計圖.
(2)扇形統(tǒng)計圖中“C組”所對應(yīng)的圓心角的度數(shù)是 .
(3)若該校共有900名學(xué)生,如果聽寫正確的個數(shù)少于24個定為不合格,請你估計這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上A,B兩點對應(yīng)的數(shù)分別為a,b,且a,b滿足|a+20|=﹣(b﹣13)2,點C對應(yīng)的數(shù)為16,點D對應(yīng)的數(shù)為﹣13.
(1)求a,b的值;
(2)點A,B沿數(shù)軸同時出發(fā)相向勻速運動,點A的速度為6個單位/秒,點B的速度為2個單位/秒,若t秒時點A到原點的距離和點B到原點的距離相等,求t的值;
(3)在(2)的條件下,點A,B從起始位置同時出發(fā).當(dāng)A點運動到點C時,迅速以原來的速度返回,到達出發(fā)點后,又折返向點C運動.B點運動至D點后停止運動,當(dāng)B停止運動時點A也停止運動.求在此過程中,A,B兩點同時到達的點在數(shù)軸上對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,直線EF分別與AB,CD相交于M,N,∠AME=60°
(1)求∠DNF的度數(shù);
(2)若∠P=90°,∠2=∠6=60°,求證:MP平分∠BMN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△DCE有公共頂點C,AB=CD,BC=CE,∠ABC=∠DCE=90°.
(1)如圖1,當(dāng)點D在BC延長線上時.
①求證:△ABC≌△DCE.
②判斷AC與DE的位置關(guān)系,并說明理由.
(2)如圖2,△CDE從(1)中位置開始繞點C順時針旋轉(zhuǎn),當(dāng)點D落在BC邊上時停止.
①若∠A=60°,記旋轉(zhuǎn)的度數(shù)為,當(dāng)為何值時,DE與△ABC一邊平行.
②如圖3,若AB=c, BC=a, AC=b, a>c,邊BC,DE交于點F,求整個運動過程中,F在BC上的運動路程(用含a, b, c的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com