(本小題滿分7分)
如圖,已知拋物線y1=-x2+bx+c經(jīng)過A(1,0),B(0,-2)兩點,頂點為D.
1.(1)求拋物線y1 的解析式;
2.(2)將△AOB繞點A逆時針旋轉(zhuǎn)90°后,得到△AO′ B′ ,將拋物線y1沿對稱軸平移后經(jīng)過點B′ ,寫出平移后所得的拋物線y2 的解析式;
3.(3)設(2)的拋物線y2與軸的交點為B1,頂點為D1,若點M在拋物線y2上,且滿足△MBB1的面積是△MDD1面積的2倍,求點M的坐標.
1.解:(1)已知拋物線y1=-x2+bx+c經(jīng)過點A(1,0), B(0,-2),
∴ 解得
∴ 所求拋物線的解析式為y1=-x2 +3x-2
2.(2)解法1: ∵ A(1,0),B(0,-2), ∴ OA=1,OB=2.
由旋轉(zhuǎn)性質(zhì)可得O′A=OA=1,O′B′=OB=2.
∴B′ 點的坐標為 (3,-1) .
∵ 拋物線y1的頂點D(,),且拋物線y2 是由y1沿對稱軸平移后得到的,
∴ 可設y2 的解析式為y2=- (x -)2+k .
∵ y2經(jīng)過點B′,∴ - (3 -)2 +k= -1.解得k=.
∴ y2=- (x -)2 +.…………………………………………………………… 4′
解法2:同解法1 得B′ 點的坐標為 (3,-1) .
∵ 當x=3時,由y1=-x2 +3x-2得y=-2,可知拋物線y1過點 (3,-2) .
∴ 將拋物線y1沿y軸向上平移1個單位后過點B′.
∴ 平移后的拋物線y2的解析式為:y2=-x2 +3x-1
3.(3)∵ y1=-x2+3x-2= -(x-)2 +,y2=-x2 +3x-1= -(x-)2 +,
∴ 頂點D(,),D1(,). ∴DD1=1.
又B1(0,-2),B1(0,-1),∴ BB1=1.
設M點坐標為(m,n) ,
∵BB1=DD1,由,
可知當m≤0時,符合條件的M點不存在;…………………………………… 5′
而當0<m<時,有m=2(-m),解得m=1;
當m>時,有m=2(m -),解得m=3.
當m=1時,n=1; 當m=3時,n=-1.
∴ M1(1,1),M2 (3,-1).
解析:略
科目:初中數(shù)學 來源: 題型:
(本小題滿分6分)
如圖,在8×11的方格紙中,每個小正方形的邊長均為1,△ABC的頂點均在小正方形的頂點處.
1.(1)畫出△ABC繞點A順時針方向旋轉(zhuǎn)90°得到的△;
2.(2)求點B運動到點B′所經(jīng)過的路徑的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(本小題滿分14分)
如圖1,拋物線與y軸交于點A,E(0,b)為y軸上一動點,過點E的直線與拋物線交于點B、C.
1.(1)求點A的坐標;
2.(2)當b=0時(如圖2),求與的面積。
3.(3)當時,與的面積大小關系如何?為什么?
4.(4)是否存在這樣的b,使得是以BC為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源:2010-2011年江蘇省常州實驗初級中學九年級第二學期模擬考試數(shù)學卷 題型:解答題
(本小題滿分8分)如圖所示的矩形包書紙中,虛線是折痕,陰影是裁剪掉的部分,四個角均為大小相同的正方形,正方形的邊長為折疊進去的寬度.
【小題1】(1)設課本的長為a cm,寬為b cm,厚為c cm,如果按如圖所示的包書方式,將封面和封底 各折進去3cm,用含a,b,c的代數(shù)式,分別表示滿足要求的矩形包書紙的長與寬;
【小題2】(2)現(xiàn)有一本長為19cm,寬為16cm,厚為6cm的字典,你能用一張長為43cm,寬為26cm的矩形紙包好這本字典,并使折疊進去的寬度不小于3cm嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年河北省石家莊市42中學九年級第一次模擬考試數(shù)學卷 題型:解答題
(本小題滿分9分)
如圖,兩根鐵棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的長度是它的,另一根露出水面的長度是它的.兩根鐵棒長度之和為55 cm.
(1)根據(jù)題意,甲、乙兩個同學分別列出了尚不完整的方程(組)如下:
甲: 乙: =55
根據(jù)甲、乙兩名同學所列的方程(組),請你分別指出未知數(shù)x,y表示的意義,然后在橫線上補全甲、乙兩名同學所列的方程(組):
甲:x表示 ,y表示 ;
乙:x表示 ;
(2)求此時木桶中水的深度多少cm?(寫出完整的解答過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com