【題目】某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,日銷售量ykg)與時間第t天之間的函數(shù)關(guān)系式為,t為整數(shù)),銷售單價p(元/kg)與時間第t天之間滿足一次函數(shù)關(guān)系如下表:

1)直接寫出銷售單價p(元/kg)與時間第t天之間的函數(shù)關(guān)系式.

2)在整個銷售旺季的80天里,哪一天的日銷售利潤最大?最大利潤是多少?

【答案】1;(2) 19天的日銷售利潤最大,最大利潤是4761元.

【解析】

1)設(shè)銷售單價p(元/kg)與時間第t天之間的函數(shù)關(guān)系式為:,將,解方程組即可得到結(jié)論;

2)設(shè)每天獲得的利潤為w元,由題意得到,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.

1)設(shè)銷售單價p(元/kg)與時間第t天之間的函數(shù)關(guān)系式為:,

代入得,

解得:,

∴銷售單價p(元/kg)與時間第t天之間的函數(shù)關(guān)系式為:

2)設(shè)每天獲得的利潤為w元,

由題意得,

,

w有最大值,

當(dāng)時,w最大,此時,,

答:第19天的日銷售利潤最大,最大利潤是4761元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.

1)已知△ABC是比例三角形,AB2BC3,請直接寫出所有滿足條件的AC的長;

2)如圖1,在四邊形ABCD中,ADBC,對角線BD平分∠ABC,∠BAC=∠ADC

①求證:△ABC∽△DCA;②求證:△ABC是比例三角形;

3)如圖2,在(2)的條件下,當(dāng)∠ADC90°時,求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為5⊙A中,弦BCED所對的圓心角分是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,則圓心A到弦BC的距離等于(  )

A.B.C.4D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AB=10BC=6.點P從點A出發(fā),沿折線AB—BC向終點C運動,在AB上以每秒5個單位長度的速度運動,在BC上以每秒3個單位長度的速度運動.點Q從點C出發(fā),沿CA方向以每秒2個單位長度的速度運動.點P、Q兩點同時出發(fā),當(dāng)點P停止時,點Q也隨之停止.設(shè)點P運動的時間為t秒.

1)求線段AC的長.

2)求線段BP的長.(用含t的代數(shù)式表示)

3)設(shè)APQ的面積為S,求St之間的函數(shù)關(guān)系式.

4)連結(jié)PQ,當(dāng)PQABC的一邊平行或垂直時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ly=﹣x+8x軸于點E,點Ax軸上的一個動點(點A不與點E重合),在直線l上取一點B(點Bx軸上方),使BE5AE,連接AB,以AB為邊沿順時針方向作正方形ABCD,連結(jié)OB,以OB為直徑作P

1)當(dāng)點A在點E右側(cè)時.

若點B剛好落在y軸上,則線段BE的長為  ,點D的坐標(biāo)為   

若點A的坐標(biāo)為(90),求正方形ABCD的邊長.

2P與正方形ABCD的邊相切于點B,求點B的坐標(biāo).

3)點QP與直線BE的交點,連接CQ,當(dāng)CQ平分∠BCD時,點B的坐標(biāo)為   .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的頂點O在坐標(biāo)原點,頂點Ax軸上,B120°,OA4,將菱形OABC繞原點順時針旋轉(zhuǎn)105°OA′B′C′的位置,則點B′的坐標(biāo)為(  )

A. (2,﹣2)B. (-)C. (2,﹣2)D. (-)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,COD關(guān)于CD的對稱圖形為CED

1)求證:四邊形OCED是菱形;

2)連接AE,交CD于點M,連接OM,取OM的中點F,連接EF

①根據(jù)題意補全圖形;

②若∠ACD=30°,請用等式表示線段CM、DE、EF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中 ,AB=1,EF分別是邊BC,CD

的點,連接EF、、AF,過AAHEF于點H. ,

那么下列結(jié)論:平分;FH=FD;③∠EAF=45°;

; ⑤△CEF的周長為2.

其中正確結(jié)論的個數(shù)是

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案