如圖,在梯形ABCD中,∠D=90°,M是AB的中點(diǎn),若CM=6.5,BC+CD+DA=17,則梯形ABCD的面積為


  1. A.
    20
  2. B.
    30
  3. C.
    40
  4. D.
    50
B
分析:延長CM、DA交于點(diǎn)E.根據(jù)AAS可以證明△AME≌△BMC,則ME=MC=6.5,AE=BC;根據(jù)BC+CD+DA=17,得DE+DC=17①,根據(jù)勾股定理,得DE2+DC2=CE2=169②,聯(lián)立求得DE•CD的值,即可求得梯形的面積.
解答:解:延長CM、DA交于點(diǎn)E.
∵AD∥BC,
∴∠MAE=∠B,∠E=∠BCM.
又AM=BM,
∴△AME≌△BMC.
∴ME=MC=6.5,AE=BC.
又BC+CD+DA=17,∠D=90°,
∴DE+DC=17①,DE2+DC2=CE2=169②.
∴DE•CD=[(DE+DC)2-DE2-DC2]=60.
∴梯形ABCD的面積為DE•CD=30.
故選B.
點(diǎn)評(píng):此題綜合運(yùn)用了全等三角形的判定和性質(zhì)、勾股定理以及完全平方公式的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案