【題目】如圖,正三角形ABC的邊長是2,分別以點B,C為圓心,以r為半徑作兩條弧,設(shè)兩弧與邊BC圍成的陰影部分面積為S,當≤r<2時,S的取值范圍是 .
【答案】≤S<
【解析】
首先求出S關(guān)于r的函數(shù)表達式,分析其增減性;然后根據(jù)r的取值,求出S的最大值與最小值,從而得到S的取值范圍.
解:如右圖所示,過點D作DG⊥BC于點G,易知G為BC的中點,CG=1.
在Rt△CDG中,由勾股定理得:DG==.
設(shè)∠DCG=θ,則由題意可得:
S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣,
∴S=﹣.
當r增大時,∠DCG=θ隨之增大,故S隨r的增大而增大.
當r=時,DG==1,∵CG=1,故θ=45°,
∴S=﹣=﹣1;
若r=2,則DG==,∵CG=1,故θ=60°,
∴S=﹣=﹣.
∴S的取值范圍是:﹣1≤S<﹣.
故答案為:﹣1≤S<﹣.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,若BC=9,tan∠CDA=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AD=5,AB=8,點E為DC上一個動點,把△ADE沿AE折疊,若點D的對應點D′,連接D′B,以下結(jié)論中:①D′B的最小值為3;②當DE=時,△ABD′是等腰三角形;③當DE=2是,△ABD′是直角三角形;④△ABD′不可能是等腰直角三角形;其中正確的有_____.(填上你認為正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于( 。
A. B. 2 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)精準扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場銷售,經(jīng)市場調(diào)查發(fā)現(xiàn),草莓銷售不會虧本,且每天的銷售量y(千克)與銷售單價x(元/千克)之間函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當該品種草莓的定價為多少時,每天銷售獲得利潤最大?最大利潤是多少?
(3)某村今年草莓采摘期限30天,預計產(chǎn)量6000千克,則按照(2)中的方式進行銷售,能否銷售完這批草莓?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=90°.
(1)請用圓規(guī)和直尺作出⊙P,使圓心P在AC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明);
(2)在(1)的條件下,若∠B=45°,AB=1,⊙P切BC于點D,求劣弧的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將矩形ABCD繞點A順時針旋轉(zhuǎn)得到矩形AEFG,點E在BD上;
(1)求證:FD=AB;(2)連接AF,求證:∠DAF=∠EFA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,是邊上的動點,連結(jié).
(1)如圖,若,,求的長;
(2)如圖,若,是的中點,把繞點順時針旋轉(zhuǎn)度()后得到,連結(jié),點是中點.求證:是等邊三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com