【題目】如圖,在平面直角坐標(biāo)系中,矩形OACB的頂點(diǎn)O是坐標(biāo)原點(diǎn),頂點(diǎn)A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點(diǎn).若E為邊OA上的一個動點(diǎn),當(dāng)△CDE的周長最小時,則點(diǎn)E的坐標(biāo)____________.
【答案】(1,0)
【解析】分析:由于C、D是定點(diǎn),則CD是定值,如果的周長最小,即有最小值.為此,作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D′,當(dāng)點(diǎn)E在線段CD′上時的周長最小.
詳解:
如圖,作點(diǎn)D關(guān)于x軸的對稱點(diǎn)D′,連接CD′與x軸交于點(diǎn)E,連接DE.
若在邊OA上任取點(diǎn)E′與點(diǎn)E不重合,連接CE′、DE′、D′E′
由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,
可知△CDE的周長最小,
∵在矩形OACB中,OA=3,OB=4,D為OB的中點(diǎn),
∴BC=3,D′O=DO=2,D′B=6,
∵OE∥BC,
∴Rt△D′OE∽Rt△D′BC,有
∴OE=1,
∴點(diǎn)E的坐標(biāo)為(1,0).
故答案為:(1,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】骰子是一種特別的數(shù)字立方體(如圖),它符合規(guī)則:相對兩面的點(diǎn)數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀將其均勻分成四個小長方形,然后按圖②的形狀拼成一個正方形.
(1)你認(rèn)為圖②中陰影部分的正方形的邊長等于________;
(2)請你用兩種不同的方法表示圖②中陰影部分的面積,方法一:__________________,方法二:________________;
(3)觀察圖②,你能寫出代數(shù)式(m+n)2,(m-n)2,mn之間的關(guān)系嗎?
(4)應(yīng)用:已知m+n=11,mn=28(m>n),求m,n的值.
① ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△ADE均為等邊三角形,BD、CE交于點(diǎn)F.
(1)求證:BD=CE;(2)求銳角∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD>AB,將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為MN,連接CN.若△CDN的面積與△CMN的面積比為1:4,則 的值為( 。
A.2
B.4
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示的有理數(shù)為﹣6,點(diǎn)B表示的有理數(shù)為6,點(diǎn)P從點(diǎn)A出發(fā)以每秒4個單位長度的速度在數(shù)軸上由A向B運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)B后立即返回,仍然以每秒4個單位長度的速度運(yùn)動至點(diǎn)A停止運(yùn)動,設(shè)運(yùn)動時間為t(單位:秒).
(1)求t=1時點(diǎn)P表示的有理數(shù);
(2)求點(diǎn)P與點(diǎn)B重合時的t值;
(3)在點(diǎn)P沿數(shù)軸由點(diǎn)A到點(diǎn)B再回到點(diǎn)A的運(yùn)動過程中,求點(diǎn)P與點(diǎn)A的距離(用含t的代數(shù)式表示);
(4)當(dāng)點(diǎn)P表示的有理數(shù)與原點(diǎn)的距離是2個單位長度時,請求出所有滿足條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B、C、E三點(diǎn)在同一條直線上,AC∥DE,AC=CE,∠ACD=∠B.
(1)求證:BC=DE
(2)若∠A=40°,求∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過O點(diǎn)作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時三角板旋轉(zhuǎn)的角度為 度;
(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;
(3)在上述直角三角板從圖1逆時針旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時,求此時三角板繞點(diǎn)O的運(yùn)動時間t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】崇左市江州區(qū)太平鎮(zhèn)壺城社區(qū)調(diào)查居民雙休日的學(xué)習(xí)狀況,采取了下列調(diào)查方式;a:從崇左高中、太平鎮(zhèn)中、太平小學(xué)三所學(xué)校中選取200名教師;b:從不同住宅樓(即江灣花園與萬鵬住宅樓)中隨機(jī)選取200名居民;c:選取所管轄區(qū)內(nèi)學(xué)校的200名在校學(xué)生.并將最合理的調(diào)查方式得到的數(shù)據(jù)制成扇形統(tǒng)計圖和部分?jǐn)?shù)據(jù)的頻數(shù)分布直方圖.以下結(jié)論:①上述調(diào)查方式最合理的是b;②在這次調(diào)查的200名教師中,在家學(xué)習(xí)的有60人;③估計該社區(qū)2000名居民中雙休日學(xué)習(xí)時間不少于4小時的人數(shù)是1180人;④小明的叔叔住在該社區(qū),那么雙休日他去叔叔家時,正好叔叔不學(xué)習(xí)的概率是0.1.其中正確的結(jié)論是( )
A.①④
B.②④
C.①③④
D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com