【題目】在同一平面內(nèi)有三條直線,如果要使其中兩條且只有兩條直線平行,那么它們( )

A. 沒有交點(diǎn) B. 只有一個交點(diǎn)

C. 有兩個交點(diǎn) D. 有三個交點(diǎn)

【答案】C

【解析】

同一平面內(nèi)有三條直線,如果其中只有兩條平行,則第三條直線與這兩條直線各有一個交點(diǎn).

解:根據(jù)題意,第三條直線與這兩條平行直線各有一個交點(diǎn).
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程x24x+20兩根為x1、x2,則x1x2=( 。

A.4B.4C.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】理數(shù)學(xué)興趣小組在探究如何求tan15°的值,經(jīng)過思考、討論、交流,得到以下思路:思路一 如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長CB至點(diǎn)D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2,BC=.tanD=tan15°===

思路二 利用科普書上的和(差)角正切公式:tan(α±β)=.假設(shè)α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===

思路三 在頂角為30°的等腰三角形中,作腰上的高也可以…

思路四

請解決下列問題(上述思路僅供參考).

(1)類比:求出tan75°的值;

(2)應(yīng)用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點(diǎn)A,測得A,C兩點(diǎn)間距離為60米,從A測得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;

(3)拓展:如圖3,直線與雙曲線交于A,B兩點(diǎn),與y軸交于點(diǎn)C,將直線AB繞點(diǎn)C旋轉(zhuǎn)45°后,是否仍與雙曲線相交?若能,求出交點(diǎn)P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,△AOB為等腰直角三角形,A(4,4)
(1)求B點(diǎn)坐標(biāo);
(2)如圖2,若C為x軸正半軸上一動點(diǎn),以AC為直角邊作等腰直角△ACD,∠ACD=90°連OD,求∠AOD的度數(shù);
(3)如圖3,過點(diǎn)A作y軸的垂線交y軸于E,F(xiàn)為x軸負(fù)半軸上一點(diǎn),G在EF的延長線上,以EG為直角邊作等腰Rt△EGH,過A作x軸垂線交EH于點(diǎn)M,連FM,等式AM=FM+OF是否成立?若成立,請證明:若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,BAC=90°,AB=AC,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當(dāng)點(diǎn)D在線段BC上時,BC與CF的位置關(guān)系為:

BC,CD,CF之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考

如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時,結(jié)論,是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當(dāng)點(diǎn)D在線段BC的延長線上時,延長BA交CF于點(diǎn)G,連接GE.若已知AB=,CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解居民月用水量,某市對某區(qū)居民用水量進(jìn)行了抽樣調(diào)查,并制成如下直方圖.

(1)這次一共抽查了戶;
(2)用水量不足10噸的有戶,用水量超過16噸的有戶;
(3)假設(shè)該區(qū)有8萬戶居民,估計用水量少于10噸的有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=﹣2x12+3的圖象的頂點(diǎn)坐標(biāo)是( 。

A. 1,3B. (﹣1,3C. 1,﹣3D. (﹣1,﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+bx-6=0的一個根為2,則b的值為( )

A.-2B.2C.-1D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(5a3b)3(a22b)______

查看答案和解析>>

同步練習(xí)冊答案