精英家教網 > 初中數學 > 題目詳情

如圖.在等邊△ABC中,∠ABC與∠ACB的平分線相交于點O,且OD∥AB,OE∥AC.

(1)試判定△ODE的形狀,并說明你的理由;

(2)線段BD、DE、EC三者有什么關系?寫出你的判斷過程.

答案:
解析:

  解:(1)ODE是等邊三角形.

  其理由是:∵△ABC是等邊三角形,

  ∴∠ABC=∠ACB60°.

  ODABOEAC,

  ∴∠ODE=∠ABC60°,∠OED=∠ACB60°.

  ∴△ODE是等邊三角形.

  (2)BDDEEC

  其理由是:∵OB平分∠ABC,且∠ABC60°,

  ∴∠ABO=∠OBE30°.

  ODAB,

  ∴∠BOD=∠ABO30°.

  ∴∠DBO=∠DOB

  DBDO

  同理可證ECEO

  DEODOE,

  BDDEEC


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,BD=3,CE=2,則△ABC的面積為(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數學 來源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點E在AC邊上,且∠EDC=15°.
(1)試說明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在等邊△ABC中,D是AC的中點,延長BC到點E,使CE=CD,AB=10cm.
(1)求BE的長;
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點,且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習冊答案