【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2的圖象相交于點(diǎn)A(4,﹣2),B(m,4)

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)觀察圖象,寫出使得y1y2成立的自變量x的取值范圍.

【答案】1y1=x+2y2;(2)﹣4x0x2

【解析】

1)先把A點(diǎn)坐標(biāo)代入反比例函數(shù)中即可求出反比例函數(shù)的表達(dá)式,然后根據(jù)反比例函數(shù)的表達(dá)式求出B的坐標(biāo),再將A,B的坐標(biāo)代入一次函數(shù)中即可求出一次函數(shù)的表達(dá)式;

2)根據(jù)圖象及反比例函數(shù)與一次函數(shù)的交點(diǎn)即可得出答案.

1)把A(4,﹣2)代入y2得到k=8,

∴反比例函數(shù)表達(dá)式y2,

B(m,4)代入y2,得到m=2,

B(24),

A、B的坐標(biāo)代入y1=ax+b,

則有,解得,

∴一次函數(shù)表達(dá)式y1=x+2

2)觀察圖象可知,y1y2時(shí)一次函數(shù)在反比例上方,

∴使得y1y2成立的自變量x的取值范圍:﹣4x0x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于反比例函數(shù)y=﹣,下列說法錯(cuò)誤的是(  )

A.圖象經(jīng)過點(diǎn)(1,﹣3

B.圖象分布在第一、三象限

C.圖象關(guān)于原點(diǎn)對稱

D.圖象與坐標(biāo)軸沒有交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形中,,點(diǎn)是對角線上一動(dòng)點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),連接

1)如圖1,求證:;

2)如圖2,連接并延長,分別交、于點(diǎn)、

①求證:;②若的最小值為,直接寫出菱形的面積為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙、丙三個(gè)不透明的布袋,甲袋中裝有2個(gè)相同的小球,它們分別標(biāo)有字母AB;乙袋中裝有3個(gè)相同的小球,它們分別標(biāo)有字母C、DE;丙袋中裝有2個(gè)相同的小球,它們分別標(biāo)有字母HI.從三個(gè)布袋中各隨機(jī)取出一個(gè)小球.求:(1)取出的3個(gè)小球恰好有2個(gè)元音字母的概率;(2)取出的3個(gè)小球全是輔音字母的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線軸的負(fù)半軸于點(diǎn),交軸的正半軸于點(diǎn),交軸于點(diǎn),且

的值;

如圖1,點(diǎn)在第四象限的拋物線上,橫坐標(biāo)為連接,交軸于點(diǎn),設(shè),求之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

如圖2,在的條件下,連接,交軸于點(diǎn),點(diǎn)在線段上,射線于點(diǎn),點(diǎn)在第二象限的拋物線上,連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接,若,,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有四個(gè)小球,上面分別標(biāo)有數(shù)字﹣2,﹣1,01,它們除了數(shù)字不同外,其它完全相同.

1)隨機(jī)從袋子中摸出一個(gè)小球,摸出的球上面標(biāo)的數(shù)字為正數(shù)的概率是   

2)小聰先從袋子中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的橫坐標(biāo);然后放回?cái)噭,接著小明從袋子中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為點(diǎn)M的縱坐標(biāo).如圖,已知四邊形ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,0),B0,﹣2),C1,0),D0,1),請用畫樹狀圖或列表法,求點(diǎn)M落在四邊形ABCD所圍成的部分內(nèi)(含邊界)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育老師統(tǒng)計(jì)了七年級(jí)甲、乙兩個(gè)班女生的身高,并繪制了以下不完整的統(tǒng)計(jì)圖.

請根據(jù)圖中信息,解決下列問題:

1)兩個(gè)班共有女生多少人?

2)將頻數(shù)分布直方圖補(bǔ)充完整;

3)求扇形統(tǒng)計(jì)圖中部分所對應(yīng)的扇形圓心角度數(shù);

4)身高在5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機(jī)抽取兩人補(bǔ)充到學(xué)校國旗隊(duì).請用列表法或畫樹狀圖法,求這兩人來自同一班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A1,0),B﹣3,0)兩點(diǎn).

1)求該拋物線的解析式;

2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最。咳舸嬖,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;

3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,OB=1,∠OBC=60°

1)如圖1,求直線BC的解析式;

2)如圖1,線段AC上方拋物線上有一動(dòng)點(diǎn)P,PDx軸于點(diǎn)H,交線段AC于點(diǎn)D,直線BGAC,交拋物線于點(diǎn)G,點(diǎn)F是直線BC上一動(dòng)點(diǎn),FEBCAC于點(diǎn)E,點(diǎn)Q是點(diǎn)A關(guān)于直線BG的對稱點(diǎn),連接PE、QF.當(dāng)線段PD取最大值時(shí),求PE+EF+QF的最小值及點(diǎn)E的坐標(biāo);

3)如圖2,將BOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至B′O C′的位置,點(diǎn)B、C的對應(yīng)點(diǎn)分別為點(diǎn)B′C′,點(diǎn)B′恰好落在BC上.將B′O C′沿直線AC平移,得到B′′O ′ C′′,點(diǎn)B′C′、O的對應(yīng)點(diǎn)分別為點(diǎn)B′′、C′′、O ′,連接B ′ B′′、B ′C′′,B ′B′′C′′是否能為等腰三角形?若能,請直接寫出所有符合條件的C′′的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案