【題目】閱讀下面材料:

小丁在研究數(shù)學(xué)問(wèn)題時(shí)遇到一個(gè)定義:對(duì)于排好順序的k個(gè)數(shù):x1,x2,…,xk,稱為數(shù)列Ak:x1,x2,…,xk,其中k為整數(shù)且k≥3.

定義V(Ak)=|x1﹣x2|+|x2﹣x3|+…+|xk2﹣xk1|+|xk1﹣xk|.

例如,若數(shù)列A5:1,2,3,4,5,則V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.

根據(jù)以上材料,回答下列問(wèn)題:

(1)已知數(shù)列A3:3,5,﹣2,求V(A3).

(2)已知數(shù)列A4:x1,x2,x3,x4,其中x1,x2,x3,x4為4個(gè)互不相等的整數(shù),且x1=3,x4=7,V(A4)=4,直接寫(xiě)出滿足條件的數(shù)列A4

(3)已知數(shù)列A5:x1,x2,x3,x4,x5中的5個(gè)數(shù)均為非負(fù)整數(shù),且x1+x2+x3+x4+x5=25,請(qǐng)直接寫(xiě)出V(A5)的最大值和最小值及對(duì)應(yīng)的數(shù)列.

【答案】(1)9(2)數(shù)列A4為:3,4,5, 7;3,4,6,7;3,5,4,7;3,5,6,7;3,6,4,7;3,6,5,7(3)5,5,5,5,5

【解析】

(1)根據(jù)定義V(Ak)=|x1﹣x2|+|x2﹣x3|+…+|xk1﹣xk|,代入數(shù)據(jù)即可求出結(jié)論;(2)在數(shù)軸上標(biāo)出x1、x4表示的點(diǎn),利用數(shù)形結(jié)合可得出x2、x337之間,找出所有的搭配方式,即可求解;(3)由數(shù)列A5:x1,x2,x3,x4,x55個(gè)數(shù)均為非負(fù)數(shù),結(jié)合絕對(duì)值即可得出0≤V(A5)≤25,由此即可求解

(1)V(A3)=|3﹣5|+|5﹣(﹣2)|=2+7=9;

(2)V(A4)=|3﹣x2|+|x2﹣x3|+|x3﹣7|=4可看成3條線段的長(zhǎng)度和,如圖所示.

∵7﹣3=4,

∴x2、x337之間,

∵x1,x2,x3,x44個(gè)互不相等的整數(shù),

數(shù)列A4為:3,4,5, 7;3,4,6,7;3,5,4,7;3,5,6,7;3,6,4,7;3,6,5,7.

(3)∵x1,x2,x3,x4,x55個(gè)數(shù)均為非負(fù)數(shù),假設(shè)x1≥x2≥x3≥x4≥x5,

∴x1≥|x1﹣x2|,x2≥|x2﹣x3|,x3≥|x3﹣x4|,x4≥|x4﹣x5|,x5≥0,

∴0≤|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|≤x1+x2+x3+x4+x5,即0≤V(A5)≤25.

∴V(A5)的最大值為25,對(duì)應(yīng)的數(shù)列為:25,0,0,0,00,0,0,0,250,25,0,0,00,0,25,0,00,0,0,25,0,

最小值為0,對(duì)應(yīng)的數(shù)列為5,5,5,5,5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究

(1)如圖①,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)MN分別是邊BC、CD上兩點(diǎn),且BMCN,連接AMBN,交于點(diǎn)P.猜想AMBN的位置關(guān)系,并證明你的結(jié)論.

(2)如圖②,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)MN分別從點(diǎn)BC同時(shí)出發(fā),以相同的速度沿BC、CD方向向終點(diǎn)CD運(yùn)動(dòng).連接AMBN,交于點(diǎn)P,求APB周長(zhǎng)的最大值;

問(wèn)題解決

(3)如圖③,AC為邊長(zhǎng)為2的菱形ABCD的對(duì)角線,∠ABC=60°.點(diǎn)MN分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CA向終點(diǎn)CA運(yùn)動(dòng).連接AMBN,交于點(diǎn)P.求APB周長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G

(1)求證:ABE∽△DEF;

(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位準(zhǔn)備組織員工到武夷山風(fēng)景區(qū)旅游,旅行社給出了如下收費(fèi)標(biāo)準(zhǔn)(如圖所示):

設(shè)參加旅游的員工人數(shù)為x人.

(1)當(dāng)25<x<40時(shí),人均費(fèi)用為   元,當(dāng)x≥40時(shí),人均費(fèi)用為   元;

(2)該單位共支付給旅行社旅游費(fèi)用27000元,請(qǐng)問(wèn)這次參加旅游的員工人數(shù)共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的方格紙中.

1)作出關(guān)于對(duì)稱的圖形

2)說(shuō)明,可以由經(jīng)過(guò)怎樣的平移變換得到?

3)以所在的直線為軸,的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,試在軸上找一點(diǎn),使得最小(保留找點(diǎn)的作圖痕跡,描出點(diǎn)的位置,并寫(xiě)出點(diǎn)的坐標(biāo))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為4,-1).

1請(qǐng)以y軸為對(duì)稱軸畫(huà)出與△ABC對(duì)稱的△A1B1C1,并直接寫(xiě)出點(diǎn)A1、B1C1的坐標(biāo);

2ABC的面積是

3點(diǎn)Pa+1,b-1與點(diǎn)C關(guān)于x軸對(duì)稱a= ,b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)村莊AB在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,CD=3千米.現(xiàn)要在河邊CD上建造一水廠,向A、B兩村送自來(lái)水.鋪設(shè)水管的工程費(fèi)用為每千米20000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)水管的費(fèi)用最省,并求出鋪設(shè)水管的總費(fèi)用W

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,拋物線經(jīng)過(guò)A、B、C三點(diǎn).點(diǎn)D是直線AC上方拋物線上任意一點(diǎn).

(1)求拋物線的函數(shù)關(guān)系式;

(2)若P為線段AC上一點(diǎn),且SPCD=2SPAD,求點(diǎn)P的坐標(biāo);

(3)如圖2,連接OD,過(guò)點(diǎn)A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加_____m.

查看答案和解析>>

同步練習(xí)冊(cè)答案