下列命題: (1)兩直線平行,同旁內(nèi)角互補(2) 同角的補角相等. (3) 直角三角形的兩個銳角互余. (4) 同位角相等。其中真命題的個數(shù)( )
A.1個B.2個C.3個D.4個
C

試題分析:(1) (2) (3)正確。(4) 兩直線平行,同位角相等。
點評:本題難度較低,主要考查學生對平行線性質(zhì)知識點的掌握。根據(jù)平行線性質(zhì)判斷命題真假即可。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,點D、E分別在邊BC、AC上,連接AD、DE,且∠1=∠B=∠C.

(1)由題設條件,請寫出三個正確結論:(要求不再添加其他字母和輔助線,找結論過程中添加的字母和輔助線不能出現(xiàn)在結論中,不必證明)
答:結論一:        ;結論二:         ;結論三:          
(2)若∠B=45°,BC=2,當點D在BC上運動時(點D不與B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此時BD的長.(注意:在第(2)的求解過程中,若有運用(1)中得出的結論,須加以證明)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果x:y=2:3,那么下列各式不成立的是 
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△DEF是由△ABC經(jīng)過位似變換得到的,點O是位似中心,D,EF分別是OA,OBOC的中點,則△DEF與△ABC的面積比是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若點C是線段AB的黃金分割點,AC<BC,且線段AC=3.82,則AB=          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在數(shù)學學習和研究中經(jīng)常需要總結運用數(shù)學思想方法。如類比、轉(zhuǎn)化、從特殊到一般等思想方法,如下是一個案例,請補充完整。
題目:如圖1,在平行四邊形ABCD中,點E是BC的中點,點F在線段AE上,BF的延長線交射線CD于點G,若,求的值。

(1)嘗試探究
在圖1中,過點E作EH∥AB交BG于點H,則易求的值是       ,的值是
         ,從而確定的值是          。
(2)類比延伸
如圖2,在原題的條件下,若,則的值是         。(用含m的代數(shù)式表示),寫出解答過程。
(3)拓展遷移
如圖3,在梯形ABCD中,DC∥AB,點E是BC延長線上的一點,AE和BD相交于F,若,a>0,b>0),則的值是         。(用含a、b的代數(shù)式表示)寫出解答過程。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,AD // BC,ABBC,點M在邊BC上,且∠MDB =∠ADB

(1)求證:BM=CM;
(2)作BEDM,垂足為點E,并交CD于點F
求證:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖①,在中,,,,點出發(fā)沿方向向點勻速運動,速度為1cm/s;點出發(fā)沿方向向點勻速運動,速度為2cm/s;連接.若設運動的時間為),解答下列問題:

(1)當為何值時,
(2)設的面積為),求之間的函數(shù)關系式;
(3)如圖②,連接,并把沿翻折,得到四邊形,那么是否存在某一時刻,使四邊形為菱形?若存在,求出此時的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

把m n="p" q(mn≠0)寫成比例式,寫錯的是
A.B.C.D.

查看答案和解析>>

同步練習冊答案