【題目】如圖,在ABCD中,對(duì)角線(xiàn) AC、BD 相交成的銳角α=30°,若 AC=8,BD=6,則ABCD的面積是( )

A.6B.8C.10D.12

【答案】D

【解析】

如圖,過(guò)點(diǎn)DDEACE點(diǎn),設(shè)ACBD相交于O點(diǎn),首先根據(jù)平行四邊形性質(zhì)得出DO=3,然后利用直角三角形中30°角所對(duì)的直角邊等于斜邊的一半求出DE,由此得出△ACD的面積,最后進(jìn)一步通過(guò)證明△ADCCBA得出△CBA的面積=ADC的面積,從而即可得出答案.

如圖,過(guò)點(diǎn)DDEACE點(diǎn),設(shè)ACBD相交于O點(diǎn),

∵在平行四邊形ABCD中,AC=8BD=6,

DO=

∵∠α=30°,DEAC

DE=,

∴△ACD的面積=,

∵四邊形ABCD為平行四邊形,

CD=AB,AD=BC,

在△ADC與△CBA中,

AD=CBCD=AB,AC=CA

∴△ADCCBASSS),

∴△CBA的面積=ADC的面積=6

∴該平行四邊形的面積=CBA的面積+ADC的面積=12,

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y= kx+b的圖象與反比例函數(shù)的圖象相交于A,B兩點(diǎn), 其中A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)都是2,如圖:

(1)求這個(gè)一次函數(shù)的解析式;

(2)在y軸是否存在一點(diǎn)P使△OAP為等腰三角形?若存在,請(qǐng)求出符合條件的點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x1x2是關(guān)于x的一元二次方程的兩實(shí)數(shù)根.

1)求m的范圍;

2)若,求m的值;

3)已知等腰△ABC的一邊長(zhǎng)為7,若x1,x2恰好是△ABC另外兩邊的邊長(zhǎng),求這個(gè)三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,九年級(jí)(1)班的小明與小艷兩位同學(xué)去操場(chǎng)測(cè)量旗桿DE的高度已知直立在地面上的竹竿AB的長(zhǎng)為3 m某一時(shí)刻,測(cè)得竹竿AB在陽(yáng)光下的投影BC的長(zhǎng)為2 m.

(1)請(qǐng)你在圖中畫(huà)出此時(shí)旗桿DE在陽(yáng)光下的投影并寫(xiě)出畫(huà)圖步驟;

(2)在測(cè)量竹竿AB的影長(zhǎng)時(shí)同時(shí)測(cè)得旗桿DE在陽(yáng)光下的影長(zhǎng)為6 m,請(qǐng)你計(jì)算旗桿DE的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】萬(wàn)達(dá)旅行社為吸引市民組團(tuán)去黃山風(fēng)景區(qū)旅游,推出了如下的收費(fèi)標(biāo)準(zhǔn):

宿州高鐵新區(qū)組織員工去黃山風(fēng)景區(qū)旅游,共支付給萬(wàn)達(dá)旅行社旅游費(fèi)用27 000元,請(qǐng)問(wèn)該單位這次共有多少員工去黃山風(fēng)景區(qū)旅游?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD120°CEAD,且CEBC,連接BE交對(duì)角線(xiàn)AC于點(diǎn)F,則∠EFC_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:

1)甲登山上升的速度是每分鐘   米,乙在A地時(shí)距地面的高度b   米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;

3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD中,E,F(xiàn)分別是ABBC邊上的中點(diǎn),連接AF,DE,BD,交于G,H(如圖所示)。求AG:GH:HF的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作:在ABC中,AC=BC=2C=90°,將一塊等腰三角形板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線(xiàn)AC、CB于D、E兩點(diǎn)。圖,是旋轉(zhuǎn)三角板得到的圖形中的3種情況。研究:

1三角板ABC繞點(diǎn)P旋轉(zhuǎn),觀察線(xiàn)段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合圖加以證明。

2三角板ABC繞點(diǎn)P旋轉(zhuǎn),PBE是否能為等腰三角形?若能指出所有情況即寫(xiě)出PBE為等腰三角形時(shí)CE的長(zhǎng);若不能請(qǐng)說(shuō)明理由。不用

查看答案和解析>>

同步練習(xí)冊(cè)答案