【題目】在直角三角形中,,點E、F分別在邊ABAC上,將沿著直線EF折疊,使得A點恰好落在BC邊上的D點處,且

求證:四邊形AFDE是菱形.

,,求線段ED的長度.

【答案】(1)證明見解析;(2)

【解析】

1)易證∠EDB=90°,所以∠EDB=C,所以ACED,從而可知∠CFD=FDE,由翻折可知A=FDE,所以∠A=CFD,所以DFAE,所以四邊形AFDE是平行四邊形,由翻折可知AF=DF,所以平行四邊形AFDE是菱形.

2)設CF=x,則由翻折可知DF=AF=6-x,根據(jù)勾股定理可知(6x2=x2+22,解得x=,DF=6x=,所以在菱形AFDEED=FD=

1EDBC,∴∠EDB=90°.

∵∠C=90°,∴∠EDB=C,ACED∴∠CFD=FDE

由翻折可知A=FDE,則∠A=CFDDFAE,

∴四邊形AFDE是平行四邊形

由翻折可知AF=DF,∴平行四邊形AFDE是菱形

2)設CF=x則由翻折可知DF=AF=6-x,由勾股定理可知DF2=CF2+CD2,

6x2=x2+22,

解得x=,

DF=6x=,∴菱形AFDEED=FD=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O,與斜邊AB交于點D、E為BC邊的中點,連接DE.

(1)求證:DE是⊙O的切線;
(2)填空:①若∠B=30°,AC=2 ,則DE=;
②當∠B=°時,以O,D,E,C為頂點的四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點AB,C在一次函數(shù)的圖象上,它們的橫坐標依次為,1,2,分別過這些點作x軸與y軸的垂線,則圖中陰影部分的面積之和是( 。

A. 1 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某飛機場東西方向的地面l上有一長為1km的飛機跑道MN(如圖),在跑道MN的正西端14.5千米處有一觀察站A.某時刻測得一架勻速直線降落的飛機位于點A的北偏西30°,且與點A相距15千米的B處;經(jīng)過1分鐘,又測得該飛機位于點A的北偏東60°,且與點A相距5 千米的C處.

(1)該飛機航行的速度是多少千米/小時?(結果保留根號)
(2)如果該飛機不改變航向繼續(xù)航行,那么飛機能否降落在跑道MN之間?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=70°,AB的垂直平分線交對角線AC于點F,垂足為E,連接DF,則∠CDF等于(
A.55°
B.65°
C.75°
D.85°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC的外接圓⊙O的半徑為2,過點C作∠ACD=∠ABC,交BA的延長線于點D,若∠ABC=45°,∠D=30°.
(1)求證:CD是⊙O的切線;
(2)求 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象的一部分過點A(5,0),對稱軸為直線x=1,則下列結論中錯誤的是(
A.abc<0
B.當x<1時,y隨x的增大而增大
C.4a﹣2b+c<0
D.方程ax2+bx+c=0的根為x1=﹣3,x2=5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大酒店客房部有三人間、雙人間和單人間客房,收費數(shù)據(jù)如下表(例如三人間普通間客房每人每天收費50元).為吸引客源,在十一黃金周期間進行優(yōu)惠大酬賓,凡團體入住一律五折優(yōu)惠.一個50人的旅游團在十月二號到該酒店住宿,租住了一些三人間、雙人間普通客房,并且每個客房正好住滿,一天一共花去住宿費1510.


普通間(元//天)

豪華間(元//天)

貴賓間(元//天)

三人間

50

100

500

雙人間

70

150

800

單人間

100

200

1500

1)三人間、雙人間普通客房各住了多少間?

2)設三人間共住了x人,則雙人間住了 人,一天一共花去住宿費用y元表示,寫出yx的函數(shù)關系式;

3)如果你作為旅游團團長,你認為上面這種住宿方式是不是費用最少?為什么?

查看答案和解析>>

同步練習冊答案