在△ABC中,已知三邊a、b、c滿足a4+2a2b2+b4-2a3b-2ab3=0.試判斷△ABC的形狀.

解:∵a4+2a2b2+b4-2a3b-2ab3=0,
∴(a2+b22-2ab(a2+b2)=0,
提公因式,得(a2+b2)(a2+b2-2ab)=0,
∵a2+b2≠0,
∴a2+b2-2ab=0,
解得a-b=0,即a=b,
∴△ABC為等腰三角形.
分析:把前三項分為一組,后兩項分為一組,運用分組分解法將已知等式因式分解,再提公因式,因式分解,根據(jù) 三角形邊的關系求解.
點評:本題考查因式分解的運用,關鍵是將已知等式因式分解,得出新等式,由此判斷三角形形狀.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

13、在△ABC中,已知兩條邊a=6,b=7,則第三條邊c的取值范圍是
1<c<13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•歷城區(qū)三模)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點.
(1)若BE=2,求CM的長;
(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;
(3)當線段AM最短時,求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•路北區(qū)三模)如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,點P、Q分別從B、C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1cm/s;點Q沿CA、AB向終點B運動,速度為2cm/s,設它們運動的時間為x(s).
(1)求x為何值時,PQ⊥AC;
(2)設△PQD的面積為y(cm2),當0<x<2時,求y與x的函數(shù)關系式;
(3)當0<x<2時,求證:AD平分△PQD的面積;
(4)探索以PQ為直徑的圓與AC的位置關系,請寫出相應位置關系的x的取值范圍(不要求寫出過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們知道,含有36°的等腰三角形是特殊的三角形,通常把有一個內(nèi)角等于36°的三角形稱為“黃金三角形”.
(1)如圖1、2,在△ABC中,已知:AB=AC,且∠A=36°.請你設計兩種不同的分法,將黃金三角形ABC分割成三個等腰三角形(分別畫在圖1,圖2上)
(2)如圖3,在△ABC中,已知:AB=AC,且∠B=36°.請你設計一種分法,將黃金三角形ABC分割成三個等腰三角形.(畫在圖3上)
注:(畫圖工具不限,要求畫出分割線段;標出能夠說明不同分法所得三角形的內(nèi)角度數(shù),不要求寫畫法,不要求證明.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

辨析題:在△ABC中,已知AB>AC,求證:AB=AC.
證明:如圖,作∠BAC的平分線與邊BC的中垂線交于點O,
則OB=OC,再作OE垂直AB于E,OF垂直AC于F,則OE=OF,
∴Rt△BOE≌Rt△COF,
∴BE=CF,①
在Rt△AOE和Rt△AOF中,OE=OF,AO=AO,
∴Rt△AOE≌Rt△AOF
∴AE=AF,②
由①、②得,AB=AC.
上述畫圖與證明過程中,哪里出錯了呢?
這說明我們今后在解題時又要注意什么呢?
在△ABC中,AB>AC,∠BAC的平分線與邊BC的中垂線相交于點O,OE垂直AB于點E,那么三條線段AB、AC、BE有何等量關系?請你寫出來并加以證明.

查看答案和解析>>

同步練習冊答案