【題目】如圖,AD、BC是⊙O的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā),沿O→C→D→O的路線勻速運(yùn)動(dòng).設(shè)∠APB=y(單位:度),那么y與點(diǎn)P運(yùn)動(dòng)的時(shí)間x(單位:秒)的關(guān)系圖是( )
A.
B.
C.
D.
【答案】B
【解析】解:(1)當(dāng)點(diǎn)P沿O→C運(yùn)動(dòng)時(shí),
當(dāng)點(diǎn)P在點(diǎn)O的位置時(shí),y=90°,
當(dāng)點(diǎn)P在點(diǎn)C的位置時(shí),
∵OA=OC,
∴y=45°,
∴y由90°逐漸減小到45°;(2)當(dāng)點(diǎn)P沿C→D運(yùn)動(dòng)時(shí),
根據(jù)圓周角定理,可得
y≡90°÷2=45°;(3)當(dāng)點(diǎn)P沿D→O運(yùn)動(dòng)時(shí),
當(dāng)點(diǎn)P在點(diǎn)D的位置時(shí),y=45°,
當(dāng)點(diǎn)P在點(diǎn)0的位置時(shí),y=90°,
∴y由45°逐漸增加到90°.
故選:B.
根據(jù)圖示,分三種情況:(1)當(dāng)點(diǎn)P沿O→C運(yùn)動(dòng)時(shí);(2)當(dāng)點(diǎn)P沿C→D運(yùn)動(dòng)時(shí);(3)當(dāng)點(diǎn)P沿D→O運(yùn)動(dòng)時(shí);分別判斷出y的取值情況,進(jìn)而判斷出y與點(diǎn)P運(yùn)動(dòng)的時(shí)間x(單位:秒)的關(guān)系圖是哪個(gè)即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按照有關(guān)規(guī)定:距高鐵軌道 200米以內(nèi)的區(qū)域內(nèi)不宜臨路新建學(xué)校、醫(yī)院、敬老院和集中住宅區(qū)等噪聲敏感建筑物.
如圖是一個(gè)小區(qū)平面示意圖,矩形ABEF為一新建小區(qū),直線MN為高鐵軌道,C、D是直線MN上的兩點(diǎn),點(diǎn)C、A、B在一直線上,且DA⊥CA,∠ACD=30°.小王看中了①號(hào)樓A單元的一套住宅,與售樓人員的對(duì)話如下:
(1)小王心中一算,發(fā)現(xiàn)售樓人員的話不可信,請(qǐng)你用所學(xué)的數(shù)學(xué)知識(shí)說明理由;
(2)若一列長(zhǎng)度為228米的高鐵以252千米/小時(shí)的速度通過時(shí),則A單元用戶受到影響時(shí)間有多長(zhǎng)?
(溫馨提示: ≈1.4, ≈1.7, ≈6.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,4),B(3,0),連接AB,將△AOB沿過點(diǎn)B的直線折疊,使點(diǎn)A落在x軸上的點(diǎn)A′處,折痕所在的直線交y軸正半軸于點(diǎn)C,則直線BC的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】模型介紹:古希臘有一個(gè)著名的“將軍飲馬問題”,大致內(nèi)容如下:古希臘一位將軍,每天都要巡查河岸側(cè)的兩個(gè)軍營(yíng)A、B,他總是先去A營(yíng),再到河邊飲馬,之后再去B營(yíng),如圖 ①,他時(shí)常想,怎么走才能使每天的路程之和最短呢?
大數(shù)學(xué)家海倫曾用軸對(duì)稱的方法巧妙的解決了這問題
如圖②,作B關(guān)于直線l的對(duì)稱點(diǎn)B′,連接AB′與直線l交于點(diǎn)C,點(diǎn)C就是所求的位置.
請(qǐng)你在下列的閱讀、應(yīng)用的過程中,完成解答.
(1)理由:如圖③,在直線L上另取任一點(diǎn)C′,連接AC′,BC′,B′C′,
∵直線l是點(diǎn)B,B′的對(duì)稱軸,點(diǎn)C,C′在l上
∴CB= , C′B=
∴AC+CB=AC+CB′= .
在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小
歸納小結(jié):
本問題實(shí)際是利用軸對(duì)稱變換的思想,把A、B在直線的同側(cè)問題轉(zhuǎn)化為在直線的兩側(cè),從而可利用“兩點(diǎn)之間線段最短”,即轉(zhuǎn)化為“三角形兩邊之和大于第三邊”的問題加以解決(其中C為AB′與l的交點(diǎn),即A、C、B′三點(diǎn)共線).
本問題可拓展為“求定直線上一動(dòng)點(diǎn)與直線外兩定點(diǎn)的距離和的最小值”問題的數(shù)學(xué)模型.
(2)模型應(yīng)用
如圖 ④,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),F(xiàn)是AC上一動(dòng)點(diǎn).
求EF+FB的最小值
分析:解決這個(gè)問題,可以借助上面的模型,由正方形的對(duì)稱性可知,B與D關(guān)于直線AC對(duì)稱,連結(jié)ED交AC于F,則EF+FB的最小值就是線段的長(zhǎng)度,EF+FB的最小值是 .
如圖⑤,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點(diǎn)B是 的中點(diǎn),在直徑CD上找一點(diǎn)P,使BP+AP的值最小,則BP+AP的最小值是;
如圖⑥,一次函數(shù)y=﹣2x+4的圖象與x,y軸分別交于A,B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C與點(diǎn)D分別為線段OA,AB的中點(diǎn),點(diǎn)P為OB上一動(dòng)點(diǎn),求:PC+PD的最小值,并寫出取得最小值時(shí)P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣實(shí)施新課程改革后,學(xué)生的自主字習(xí)、合作交流能力有很大提高.張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)査,并將調(diào)査結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)査結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中,張老師一共調(diào)査了名同學(xué),其中C類女生有名,D類男生有名;
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,張老師想從被調(diào)査的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極開展“陽光體育”活動(dòng),共開設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜愛哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名學(xué)生,請(qǐng)估計(jì)全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:
①對(duì)角線互相垂直的平行四邊形是正方形;
② ,則m≥1;
③過弦的中點(diǎn)的直線必經(jīng)過圓心;
④圓的切線垂直于經(jīng)過切點(diǎn)的半徑;
⑤圓的兩條平行弦所夾的弧相等;
其中正確的命題有( )個(gè).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為A(3,0),與y軸的交點(diǎn)為B(0,3),其頂點(diǎn)為C,對(duì)稱軸為x=1.
(1)求拋物線的解析式;
(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ABM為等腰三角形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E,F分別是等邊△ABC中AC,AB邊上的中點(diǎn),以AE為邊向外作等邊△ADE.
(1)求證:四邊形AFED是菱形;
(2)連接DC,若BC=10,求四邊形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com