【題目】小明在學習“銳角三角函數(shù)”中發(fā)現(xiàn),將如圖所示的矩形紙片ABCD沿過點 B的直線折疊,使點A落在BC上的點E處,還原后,再沿過點E的直線折疊,使點A落在BC上的點F處,這樣就可以求出67.5°角的正切值是
A. +1 B. +1 C. 2.5 D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( )
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,拋物線的頂點D的坐標為(1,-4),且與y軸交于點
C(0,3)
求該函數(shù)的關系式;
求改拋物線與x軸的交點A,B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=BC,∠ABC=120°,點E是AC上一點,連接BE,且∠BEC=50°,D為點B關于直線AC的對稱點,連接CD,將線段EB繞點E順時針旋轉40°得到線段EF,連接DF.
(1)請你在下圖中補全圖形;
(2)請寫出∠EFD的大小,并說明理由;
(3)連接CF,求證:DF=CF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組的同學在一次數(shù)學活動中,為了測量某建筑物AB的高,他們來到與建筑物AB在同一平地且相距12米的建筑物CD上的C處觀察,測得某建筑物頂部A的仰角為30°、底部B的俯角為45°.求建筑物AB的高(精確到1米).(可供選用的數(shù)據(jù):≈1.4,≈1.7).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校教學樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學校為了消除安全隱患,決定對斜坡CD進行改造,在保持坡腳C不動的情況下,學校至少要把坡頂D向后水平移動多少米才能保證教學樓的安全?(結果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為了了解員工每人所創(chuàng)年利潤情況,公司從各部抽取部分員工對每年所創(chuàng)年利潤情況進行統(tǒng)計,并繪制如圖1,圖2統(tǒng)計圖.
(1)求抽取員工總人數(shù),并將圖補充完整;
(2)每人所創(chuàng)年利潤的眾數(shù)是 ,每人所創(chuàng)年利潤的中位數(shù)是 ,平均數(shù)是 ;
(3)若每人創(chuàng)造年利潤10萬元及(含10萬元)以上為優(yōu)秀員工,在公司1200員工中有多少可以評為優(yōu)秀員工?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】當題目條件出現(xiàn)角平分線時,我們往往可以構造等腰三角形解決問題.如圖1,在△ABC中,∠A=2∠B,CD 平分∠ACB,AD=2,AC=3,求 BC 的長.解決方法:如圖 2,在BC 邊上取點 E,使 EC=AC,連接 DE.可得△DEC≌△DAC 且△BDE 是等腰三角形,所以 BC 的長為 5.試通過構造等腰三角形解決問題:如圖 3,△ABC 中,AB=AC,∠A=20°,BD 平分∠ABC,要想求 AD 的長,僅需知道下列哪些線段的長(BC=a, BD=b, DC=c)
A.a 和 bB.a 和 cC.b 和 cD.a、b 和 c
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com