【題目】如圖,點A,B,C在⊙O上,若∠BAC=45°,OB=2,則圖中陰影部分的面積為( )

A. π-4 B. π-1 C. π-2 D. -2

【答案】C

【解析】試題解析:∵∠BAC=45°,

∴∠BOC=90°,

∴△OBC是等腰直角三角形,

OB=2,

∴△OBCBC邊上的高為:OB=,

BC=2

S陰影=S扇形OBC﹣SOBC=.

故選C.

型】單選題
結(jié)束】
10

【題目】夏季的一天,身高為1.6m的小玲想測量一下屋前大樹的高度,她沿著樹影BA由B到A走去,當(dāng)走到C點時,她的影子頂端正好與樹的影子頂端重合,測得BC=3.2m,CA=0.8m,于是得出樹的高度為(  )

A.8m B.6.4m C.4.8m D.10m

【答案】A.

【解析】

試題分析:因為人和樹均垂直于地面,所以和光線構(gòu)成的兩個直角三角形相似,

設(shè)樹高x米,則,即,解得,x=8. 故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】食品安全關(guān)乎民生,食品中添加過量的添加劑對人體有害,但適量的添加劑對人體無害且有利于食品的儲存.某飲料廠為了解A、B兩種飲料添加劑的添加情況,隨機抽檢了A30瓶,B70瓶,檢測發(fā)現(xiàn),A種每瓶比B種每瓶少1克添加劑,兩種共加入了添加劑270克,求A、B兩種飲料每瓶各加入添加劑多少克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,ACE,F兩點,再分別以E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M

1)由題意可知,射線AP   ;

2)若∠CMA33°,求∠CAB的度數(shù);

3)若CNAM,垂直為N,試說明:ANMN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在梯形ABCD中,ABCD,B=90°,AB=2,CD=1,BC=m,P為線段BC上的一動點,且和B、C不重合,連接PA,過P作PEPA交CD所在直線于E.設(shè)BP=x,CE=y.

(1)求y與x的函數(shù)關(guān)系式;

(2)若點P在線段BC上運動時,點E總在線段CD上,求m的取值范圍;

(3)如圖2,若m=4,將PEC沿PE翻折至PEG位置,BAG=90°,求BP長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為方便市民通行,某廣場計劃對坡角為30°坡長為60 米的斜坡AB進行改造,在斜坡中點D 處挖去部分坡體(陰影表示),修建一個平行于水平線CA 的平臺DE 和一條新的斜坡BE

(1)若修建的斜坡BE 的坡角為36°,則平臺DE的長約為多少米?

(2)在距離坡角A點27米遠的G處是商場主樓,小明在D點測得主樓頂部H 的仰角為30°,那么主樓GH高約為多少米?

(結(jié)果取整數(shù),參考數(shù)據(jù):sin 36°06,cos 36°08,tan 36°0717)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(3,﹣6)是二次函數(shù)y=ax2上的一點,則這二次函數(shù)的解析式是

【答案】y=﹣x2

【解析】

試題分析:將點A(3,﹣6)代入y=ax2,利用待定系數(shù)法法求該二次函數(shù)的解析式即可﹣6=9a

解得a=﹣;因此該二次函數(shù)的解析式為:y=﹣x2

考點:待定系數(shù)法求二次函數(shù)解析式

型】填空
結(jié)束】
15

【題目】在一個不透明的口袋中裝有8個紅球和若干個白球,它們除顏色外其它完全相同,通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在40%附近,則口袋中白球可能有________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+2m+1x+m2﹣1)有最小值﹣2,則m=________

【答案】

【解析】試題解析:∵二次函數(shù)有最小值﹣2

y=,

解得:m=.

型】填空
結(jié)束】
19

【題目】如圖,已知ABC三個頂點的坐標分別是A(-2,3),B(-3,-1),C(-1,1)

(1)畫出ABC繞點O逆時針旋轉(zhuǎn)90°后的A1B1C1,并寫出點A1的坐標;

(2)畫出ABC繞點O逆時針旋轉(zhuǎn)180°后的A2B2C2,并寫出點A2的坐標;

(3)直接回答:AOB與A2OB2有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是長方形紙帶,將紙帶沿折疊成圖2,再沿即折疊成圖3,若在圖1中∠DEF=a,則圖3中∠CFE用含有a的式子表示=_______(0<a<60°) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,B=60°,CD是⊙O的直徑,點PCD延長線上的一點,且AP=AC

1)求證:PA是⊙O的切線;

2)求證:AC2=COCP;

3)若PD=,求⊙O的直徑.

查看答案和解析>>

同步練習(xí)冊答案