【題目】如圖,點A,B,C在⊙O上,若∠BAC=45°,OB=2,則圖中陰影部分的面積為( )
A. π-4 B. π-1 C. π-2 D. -2
【答案】C
【解析】試題解析:∵∠BAC=45°,
∴∠BOC=90°,
∴△OBC是等腰直角三角形,
∵OB=2,
∴△OBC的BC邊上的高為:OB=,
∴BC=2
∴S陰影=S扇形OBC﹣S△OBC=.
故選C.
【題型】單選題
【結(jié)束】
10
【題目】夏季的一天,身高為1.6m的小玲想測量一下屋前大樹的高度,她沿著樹影BA由B到A走去,當(dāng)走到C點時,她的影子頂端正好與樹的影子頂端重合,測得BC=3.2m,CA=0.8m,于是得出樹的高度為( )
A.8m B.6.4m C.4.8m D.10m
科目:初中數(shù)學(xué) 來源: 題型:
【題目】食品安全關(guān)乎民生,食品中添加過量的添加劑對人體有害,但適量的添加劑對人體無害且有利于食品的儲存.某飲料廠為了解A、B兩種飲料添加劑的添加情況,隨機抽檢了A種30瓶,B種70瓶,檢測發(fā)現(xiàn),A種每瓶比B種每瓶少1克添加劑,兩種共加入了添加劑270克,求A、B兩種飲料每瓶各加入添加劑多少克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F兩點,再分別以E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M,
(1)由題意可知,射線AP是 ;
(2)若∠CMA=33°,求∠CAB的度數(shù);
(3)若CN⊥AM,垂直為N,試說明:AN=MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P為線段BC上的一動點,且和B、C不重合,連接PA,過P作PE⊥PA交CD所在直線于E.設(shè)BP=x,CE=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)若點P在線段BC上運動時,點E總在線段CD上,求m的取值范圍;
(3)如圖2,若m=4,將△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為方便市民通行,某廣場計劃對坡角為30°,坡長為60 米的斜坡AB進行改造,在斜坡中點D 處挖去部分坡體(陰影表示),修建一個平行于水平線CA 的平臺DE 和一條新的斜坡BE.
(1)若修建的斜坡BE 的坡角為36°,則平臺DE的長約為多少米?
(2)在距離坡角A點27米遠的G處是商場主樓,小明在D點測得主樓頂部H 的仰角為30°,那么主樓GH高約為多少米?
(結(jié)果取整數(shù),參考數(shù)據(jù):sin 36°=0.6,cos 36°=0.8,tan 36°=0.7,=1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(3,﹣6)是二次函數(shù)y=ax2上的一點,則這二次函數(shù)的解析式是 .
【答案】y=﹣x2
【解析】
試題分析:將點A(3,﹣6)代入y=ax2,利用待定系數(shù)法法求該二次函數(shù)的解析式即可得﹣6=9a,
解得a=﹣;因此該二次函數(shù)的解析式為:y=﹣x2.
考點:待定系數(shù)法求二次函數(shù)解析式
【題型】填空題
【結(jié)束】
15
【題目】在一個不透明的口袋中裝有8個紅球和若干個白球,它們除顏色外其它完全相同,通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在40%附近,則口袋中白球可能有________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,則m=________.
【答案】
【解析】試題解析:∵二次函數(shù)有最小值﹣2,
∴y=﹣,
解得:m=.
【題型】填空題
【結(jié)束】
19
【題目】如圖,已知△ABC三個頂點的坐標分別是A(-2,3),B(-3,-1),C(-1,1)
(1)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A1B1C1,并寫出點A1的坐標;
(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)180°后的△A2B2C2,并寫出點A2的坐標;
(3)直接回答:∠AOB與∠A2OB2有什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是長方形紙帶,將紙帶沿折疊成圖2,再沿即折疊成圖3,若在圖1中∠DEF=a,則圖3中∠CFE用含有a的式子表示=_______(0<a<60°) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)求證:AC2=COCP;
(3)若PD=,求⊙O的直徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com