【題目】如圖,在直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)都在坐標(biāo)軸上,A,B兩點(diǎn)關(guān)于y軸對稱,點(diǎn)Cy軸正半軸上一個(gè)動(dòng)點(diǎn),AD是角平分線.

1)如圖1,若∠ACB90°,直接寫出線段ABCD,AC之間數(shù)量關(guān)系;

2)如圖2,若ABAC+BD,求∠ACB的度數(shù);

3)如圖2,若∠ACB100°,求證:ABAD+CD

【答案】1ABAC+CD;(2108°;(3)證明見解析

【解析】

1)如圖1,過DDMABM,根據(jù)軸對稱的性質(zhì)得到CA=CB,根據(jù)角平分線的性質(zhì)得到CD=MD,∠ABC=45°,根據(jù)全等三角形的性質(zhì)得到AC=AM,于是得到結(jié)論;

2)設(shè)∠ACB=α,則∠CAB=CBA=90°-α,在AB上截取AK=AC,連結(jié)DK,根據(jù)角平分線的定義得到∠CAD=KAD,根據(jù)全等三角形的性質(zhì)得到∠ACD=AKD=α,根據(jù)三角形的內(nèi)角和即可得到結(jié)論;

3)如圖2,在AB上截取AH=AD,連接DH,根據(jù)等腰三角形的性質(zhì)得到∠CAB=CBA=40°,根據(jù)角平分線的定義得到∠HAD=CAD=20°,求得∠ADH=AHD=80°,在AB上截取AK=AC,連接DK,根據(jù)全等三角形的性質(zhì)得到∠ACB=AKD=100°CD=DK,根據(jù)等腰三角形的性質(zhì)得到DH=BH,于是得到結(jié)論.

1)如圖1,過DDMABM,

AB兩點(diǎn)關(guān)于y軸對稱,

CACB

∵∠ACB90°,AD是角平分線,

CDMD,∠ABC45°

∴∠BDM45°,

BMDM

BMCD,

RTADCRTADM中,,

RTADCRTADMHL),

ACAM,

ABAM+BMAC+CD

ABAC+CD;

2)設(shè)∠ACBα,則∠CAB=∠CBA90°α,

AB上截取AKAC,連結(jié)DK,

ABAC+BD,

BKBD

AD是角平分線,

∴在CADKAD中,

∴△CAD≌△KADSAS),

∴∠ACD=∠AKDα,

∴∠BKD180°α,

BKBD,

∴∠BDK180°α

BDK中,

180°α+180°α+90°α180°,

α108°,

∴∠ACB108°;

3)如圖2,在AB上截取AHAD,連接DH,

∵∠ACB100°ACBC,

∴∠CAB=∠CBA40°

AD是角平分線,

∴∠HAD=∠CAD20°,

∴∠ADH=∠AHD80°,

AB上截取AKAC,連接DK

由(1)得,△CAD≌△KAD,

∴∠ACB=∠AKD100°,CDDK,

∴∠DKH80°=∠DHK

DKDHCD,

∵∠CBA40°

∴∠BDH40°,

DHBH

BHCD,

ABAH+BH

ABAD+CD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一張邊長為厘米的正方形桌面,因?yàn)閷?shí)際需要,需將正方形邊長增加厘米,木工師傅設(shè)計(jì)了如圖所示的三種方案:

小明發(fā)現(xiàn)這三種方案都能驗(yàn)證公式:.

對于方案一,小明是這樣驗(yàn)證的:

大正方形面積可表示為:,也可以表示為:,

.

請你仿照上述方法根據(jù)方案二、方案三,寫出公式的驗(yàn)證過程.

(1)方案二:

(2)方案三:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算:(﹣ 2﹣| ﹣1|+(﹣ +1)0+3tan30°
(2)解方程: + =4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y是x的反比例函數(shù),且x=8時(shí),y=12.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)如果自變量x的取值范圍是2≤x≤3,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如果兩個(gè)三角形兩邊和其中一邊所對的角相等,則兩個(gè)三角形全等,這是一個(gè)假命題,請畫圖舉例說明;

2)如圖,在ABCDEF中,ABED,BCDF,∠BAC=∠DEF120°,求證:ABC≌△EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

(1)

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)先化簡,再求值: ÷(1+ ),其中x=2017.
(2)已知方程x2﹣2x+m﹣3=0有兩個(gè)相等的實(shí)數(shù)根,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)、、,、、分別在直線軸上.,,都是等腰直角三角形,如果,則點(diǎn)的橫坐標(biāo)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過點(diǎn)(1,8),M為它的頂點(diǎn).

(1)求拋物線的解析式;
(2)求△MCB的面積SMCB

查看答案和解析>>

同步練習(xí)冊答案