【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,按這樣的規(guī)律進行下去,A11B11C11D11E11F11的邊長為( 。

A. B. C. D.

【答案】A

【解析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質得∠E1OD1=60°,則E1OD1為等邊三角形,再根據(jù)切線的性質得OD2E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=(2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=(10×2,然后化簡即可.

詳解:連接OE1,OD1,OD2,如圖,

∵六邊形A1B1C1D1E1F1為正六邊形,

∴∠E1OD1=60°,

∴△E1OD1為等邊三角形,

∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,

OD2E1D1,

OD2=E1D1=×2,

∴正六邊形A2B2C2D2E2F2的邊長=×2,

同理可得正六邊形A3B3C3D3E3F3的邊長=(2×2,

則正六邊形A11B11C11D11E11F11的邊長=(10×2=

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a≠0)的圖象過原點O和點A(1, ),且與x軸交于點B,AOB的面積為。

(1)求拋物線的解析式;

(2)若拋物線的對稱軸上存在一點M使△AOM的周長最小,M點的坐標;

(3)Fx軸上一動點,Fx軸的垂線,交直線AB于點E,交拋物線于點P,PE=,直接寫出點E的坐標(寫出符合條件的兩個點即可)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,以AB為直徑作⊙OBC于點D,EAC的中點,連接DE并延長交BA的延長線于點F

1)求證:DE是⊙O的切線;

2)若∠F=30°,O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應環(huán)保組織提出的“低碳生活”的號召,李明決定不開汽車而改騎自行車上班.有一天,李明騎自行車從家里到工廠上班,途中因自行車發(fā)生故障,修車耽誤了一段時間,車修好后繼續(xù)騎行,直至到達工廠(假設在騎自行車過程中勻速行駛).李明離家的距離(米)與離家時間(分鐘)的關系表示如下圖:

(1)李明從家出發(fā)到出現(xiàn)故障時的速度為 米/分鐘;

(2)李明修車用時 分鐘;

(3)求線段BC所對應的函數(shù)關系式(不要求寫出自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解學生參加體育活動的情況,學校對學生進行隨機抽樣調查,其中一個問題是你平均每天參加體育活動的時間是多少,共有4個選項:A1.5小時以上;B11.5小時;C0.51小時;D0.5小時以下.圖1、2是根據(jù)調查結果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:

1)本次一共調查了多少名學生?

2)在圖1中將選項B的部分補充完整;

3)若該校有3000名學生,你估計全?赡苡卸嗌倜麑W生平均每天參加體育活動的時間在1小時以下.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的角平分線CDBE相交于F,A90°,EGBC,且CGEGG,下列結論:①∠CEG2DCB;②∠DFBCGE;③∠ADCGCD;CA平分∠BCG.其中正確的結論是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,ACx軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)y=的圖象于點B,AB=

(1)求反比例函數(shù)的解析式;

(2)若P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點,且x1<x2時,y1>y2,指出點P、Q各位于哪個象限?并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點,連接EF,點P從點E出發(fā),沿EF方向勻速運動,速度為1cm/s,同時,點Q從點D出發(fā),沿DB方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設運動時間為t(0<t<4)s,解答下列問題:

(1)求證:△BEF∽△DCB;

(2)當點Q在線段DF上運動時,若△PQF的面積為0.6cm2,求t的值;

(3)如圖2過點QQG⊥AB,垂足為G,當t為何值時,四邊形EPQG為矩形,請說明理由;

(4)當t為何值時,△PQF為等腰三角形?試說明理由.

查看答案和解析>>

同步練習冊答案