【題目】如圖,在等腰△ABC中,AB=AC,點(diǎn)D在BC上,且AD=AE.
(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度數(shù)?
(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度數(shù)?
(3)猜想∠EDC與∠BAD的數(shù)量關(guān)系?(不必證明)
【答案】(1)∠EDC的度數(shù)是15°;
(2)∠EDC的度數(shù)是15°;
(3)∠EDC與∠BAD的數(shù)量關(guān)系是∠EDC=12∠BAD.
【解析】
(1)根據(jù)等腰三角形性質(zhì)求出∠B的度數(shù),根據(jù)三角形的外角性質(zhì)求出∠ADC,求出∠DAC,根據(jù)等腰三角形性質(zhì)求出∠ADE即可;
(2)根據(jù)等腰三角形性質(zhì)求出∠B的度數(shù),根據(jù)三角形的外角性質(zhì)求出∠ADC,求出∠DAC,根據(jù)等腰三角形性質(zhì)求出∠ADE即可;
(3)根據(jù)(1)(2)的結(jié)論猜出即可.
(1)∵∠BAC=90°,AB=AC,
∴∠B=∠C= (180°∠BAC)=45°,
∴∠ADC=∠B+∠BAD=45°+30°=75°,
∵∠DAC=∠BAC∠BAD=90°30°=60°,
∵AD=AE,
∴∠ADE=∠AED= (180°∠DAC)=60°
∴∠EDC=∠ADC∠ADE=75°60°=15°
答:∠EDC的度數(shù)是15°.
(2)與(1)類似:
∠B=∠C= (180°∠BAC)=90°α,
∴∠ADC=∠B+∠BAD=90°α+30°=120°α,
∵∠DAC=∠BAC∠BAD=α30°,
∴∠ADE=∠AED= (180°∠DAC)=105°α,
∴∠EDC=∠ADC∠ADE=(120°α)(105°α)=15°
答:∠EDC的度數(shù)是15°.
(3)∠EDC與∠BAD的數(shù)量關(guān)系是∠EDC=12∠BAD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2-2amx+am2+2m+4的頂點(diǎn)P在一條定直線l上.
(1)直接寫出直線l的解析式;
(2)若存在唯一的實(shí)數(shù)m,使拋物線經(jīng)過原點(diǎn).
①求此時(shí)的a和m的值;
②拋物線的對稱軸與x軸交于點(diǎn)A,B為拋物線上一動(dòng)點(diǎn),以OA、OB為邊作□OACB,若點(diǎn)C在拋物線上,求B的坐標(biāo).
(3)拋物線與直線l的另一個(gè)交點(diǎn)Q,若a=1,直接寫出△OPQ的面積的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大.
其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,補(bǔ)充下列結(jié)論和依據(jù).
∵∠ACE=∠D(已知),
∴_____∥______(______________________ ).
∵∠ACE=∠FEC(已知),
∴______∥______(_ ___ _______).
∵∠AEC=∠BOC(已知),
∴_____∥______(___ _____________________).
∵∠BFD+∠FOC=180°(已知),
∴_____∥______(_____ ____________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BA延長線上的一點(diǎn),點(diǎn)E是AC的中點(diǎn)。
(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法)。
①作∠DAC的平分線AM。②連接BE并延長交AM于點(diǎn)F。
(2)猜想與證明:試猜想AF與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn),,分別是邊,,上的點(diǎn),且,,相交于點(diǎn),若點(diǎn)是的重心.則以下結(jié)論:①線段,,是的三條角平分線;②的面積是面積的一半;③圖中與面積相等的三角形有5個(gè);④的面積是面積的.其中一定正確的結(jié)論有( )
A.①②③B.②④C.③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點(diǎn),分別是邊,上的點(diǎn),點(diǎn)是一動(dòng)點(diǎn).記為,為,為.
(1)若點(diǎn)在線段上,且,如圖1,則_____________;
(2)若點(diǎn)在邊上運(yùn)動(dòng),如圖2所示,請猜想,,之間的關(guān)系,并說明理由;
(3)若點(diǎn)運(yùn)動(dòng)到邊的延長線上,如圖3所示,則,,之間又有何關(guān)系?請直接寫出結(jié)論,不用說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,AD=18cm,BC=30cm.點(diǎn)E從點(diǎn)D出發(fā),以1cm/s的速度向點(diǎn)A運(yùn)動(dòng):點(diǎn)F從點(diǎn)C同時(shí)出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,M為BC上一點(diǎn)且CM=13cm,t=_____s秒時(shí),以D、M、E、F為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某山區(qū)有若干名中、小學(xué)生因貧困失學(xué)需要捐助,資助一名中學(xué)生的學(xué)習(xí)費(fèi)用需要a元,資助一名小學(xué)生的學(xué)習(xí)費(fèi)用需要b元.某校學(xué)生積極捐款,初中各年級(jí)學(xué)生捐款數(shù)額與其捐助貧困中學(xué)生和小學(xué)生人數(shù)的部分情況如下表:
捐款數(shù)額/元 | 資助貧困中學(xué)生人數(shù)/名 | 資助貧困小學(xué)生人數(shù)/名 | |
七年級(jí) | 4000 | 2 | 4 |
八年級(jí) | 4200 | 3 | 3 |
九年級(jí) | 5000 |
(1)求a,b的值;
(2)九年級(jí)學(xué)生的捐款恰好解決了剩余貧困中小學(xué)生的學(xué)習(xí)費(fèi)用,請計(jì)算九年級(jí)學(xué)生可捐助的貧困小學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com