如圖,∠ABC和∠ACB的角平分線相交于點(diǎn)M,且過點(diǎn)M的直線DE∥BC,分別交AB、AC于D、E兩點(diǎn),若AB=12,AC=10,則△ADE的周長為
22
22
分析:由∠ABC和∠ACB的角平分線相交于點(diǎn)M,且過點(diǎn)M的直線DE∥BC,易證得△DBM與△ECM是等腰三角形,繼而可得△ADE的周長等于AB+AC.
解答:解:∵DE∥BC,
∴∠DMB=∠MBC,∠EMC=∠MCB,
∵∠ABC和∠ACB的角平分線相交于點(diǎn)M,
∴∠DBM=∠MBC,∠ECM=∠MCB,
∴∠DBM=∠DMB,∠ECM=∠EMC,
∴DM=DB,EM=EC,
∴△ADE的周長為:AD+DE+AE=AD+DM+EM+AE=AD+DB+EC+AE=AB+AC=12+10=22.
故答案為:22.
點(diǎn)評:此題考查了等腰三角形的性質(zhì)與判定.此題難度適中,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點(diǎn),連AD,BE,F(xiàn)為線段AD的中點(diǎn),連CF,
(1)如圖1,當(dāng)D點(diǎn)在BC上時(shí),BE與CF的數(shù)量關(guān)系是
 
,位置關(guān)系是
 
,請證明.
精英家教網(wǎng)
(2)如圖2,把△DEC繞C點(diǎn)順時(shí)針旋轉(zhuǎn)一個(gè)銳角,其他條件不變,問(1)中的關(guān)系是否仍然成立?如果成立請證明.如果不成立,請寫出相應(yīng)的正確的結(jié)論并加以證明.
(3)如圖3,把△DEC繞C點(diǎn)順時(shí)針旋轉(zhuǎn)45°,若∠DCF=30°,直接寫出
BGCG
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,△ABC和△ADE都是等腰直角三角形,∠ACB和∠AED都是直角,點(diǎn)C在AD上,如果△ABC經(jīng)旋轉(zhuǎn)后能與△ADE重合,那么點(diǎn)
A
是旋轉(zhuǎn)中心,旋轉(zhuǎn)的最小度數(shù)為
45
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△CDE均為等腰直角三角形,點(diǎn)B,C,D在一條直線上,點(diǎn)M是AE的中點(diǎn),BC=3,CD=1.
(1)求證:tan∠AEC=
BCCD

(2)請?zhí)骄緽M與DM的數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連接CE交AD于點(diǎn)F,連接BD交 CE于點(diǎn)G,連接BE.下列結(jié)論中:
①CE=BD;  ②△ADC是等腰直角三角形;③∠ADB=∠AEB;    ④CD=EF.
一定正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求證:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2
2
.求∠ACD的度數(shù);
(3)在(2)的條件下,直接寫出DE的長為
2
10
2
10
.(只填結(jié)果,不用寫出計(jì)算過程)

查看答案和解析>>

同步練習(xí)冊答案