如圖,掛著“慶祝海門實(shí)驗(yàn)學(xué)校建校三周年”條幅的氫氣球升在校園上空,已知?dú)馇虻闹睆綖?m,在地面A點(diǎn)測(cè)得氣球中心O的仰角為∠OAD=60°,測(cè)得氣球的視角∠BAC=2°(AB、AC為⊙O的切線,B、C為切點(diǎn)).則氣球中心O離地面的高度OD約為多少?
(精確到1m,參考數(shù)據(jù):sin1°=0.0175,sin2°=0.0349,tan1°=0.0175,tan2°=0.0350,
3
=1.732)
分析:連接圓心和切點(diǎn),利用構(gòu)造的直角三角形求得OA長(zhǎng),進(jìn)而求得所求線段長(zhǎng).
解答:解:連接OC.
∵氣球的直徑為4m,∴半徑為2m,∵測(cè)得氣球的視角∠BAC=2°(AB、AC為⊙O的切線,B、C為切點(diǎn)),
∴∠OAC=1°,
在Rt△OAC中,OC=2m,∠OAC=1°,
∵sin1°=
OC
AO
,
∴AO=
2
0.0175
=114.2(m).
在Rt△OAD中,有OD=OA×sin60°≈99(m).
答:氣球中心O離地面的高度OD約為99m.
點(diǎn)評(píng):本題考查了仰角的定義,要求學(xué)生能借助仰角構(gòu)造直角三角形,建立數(shù)學(xué)模型并解直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,掛著“慶祝海門實(shí)驗(yàn)學(xué)校建校三周年”條幅的氫氣球升在校園上空,已知?dú)馇虻闹睆綖?m,在地面A點(diǎn)測(cè)得氣球中心O的仰角為∠OAD=60°,測(cè)得氣球的視角∠BAC=2°(AB、AC為⊙O的切線,B、C為切點(diǎn)).則氣球中心O離地面的高度OD約為多少?
(精確到1m,參考數(shù)據(jù):sin1°=0.0175,sin2°=0.0349,tan1°=0.0175,tan2°=0.0350,數(shù)學(xué)公式=1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,掛著“慶祝海門實(shí)驗(yàn)學(xué)校建校三周年”條幅的氫氣球升在校園上空,已知?dú)馇虻闹睆綖?m,在地面A點(diǎn)測(cè)得氣球中心O的仰角為∠OAD=60°,測(cè)得氣球的視角∠BAC=2°(AB、AC為⊙O的切線,B、C為切點(diǎn)).則氣球中心O離地面的高度OD約為多少?
(精確到1m,參考數(shù)據(jù):sin1°=0.0175,sin2°=0.0349,tan1°=0.0175,tan2°=0.0350,
3
=1.732)
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案